Catherine Au
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Catherine Au.
Toxicological Sciences | 2008
Maxwell C. K. Leung; Phillip L. Williams; Alexandre Benedetto; Catherine Au; Kirsten J. Helmcke; Michael Aschner; Joel N. Meyer
The nematode Caenorhabditis elegans has emerged as an important animal model in various fields including neurobiology, developmental biology, and genetics. Characteristics of this animal model that have contributed to its success include its genetic manipulability, invariant and fully described developmental program, well-characterized genome, ease of maintenance, short and prolific life cycle, and small body size. These same features have led to an increasing use of C. elegans in toxicology, both for mechanistic studies and high-throughput screening approaches. We describe some of the research that has been carried out in the areas of neurotoxicology, genetic toxicology, and environmental toxicology, as well as high-throughput experiments with C. elegans including genome-wide screening for molecular targets of toxicity and rapid toxicity assessment for new chemicals. We argue for an increased role for C. elegans in complementing other model systems in toxicological research.
Nature | 2011
Camilla Burnett; Sara Valentini; Filipe Cabreiro; Martin Goss; Milán Somogyvári; Matthew D.W. Piper; Matthew P. Hoddinott; George L. Sutphin; Vid Leko; Joshua J. McElwee; Rafael P. Vázquez-Manrique; Anne Marie Orfila; Daniel Ackerman; Catherine Au; Giovanna Vinti; Michèle Riesen; Ken Howard; Christian Neri; Antonio Bedalov; Matt Kaeberlein; Csaba Soti; Linda Partridge; David Gems
Overexpression of sirtuins (NAD+-dependent protein deacetylases) has been reported to increase lifespan in budding yeast (Saccharomyces cerevisiae), Caenorhabditis elegans and Drosophila melanogaster. Studies of the effects of genes on ageing are vulnerable to confounding effects of genetic background. Here we re-examined the reported effects of sirtuin overexpression on ageing and found that standardization of genetic background and the use of appropriate controls abolished the apparent effects in both C. elegans and Drosophila. In C. elegans, outcrossing of a line with high-level sir-2.1 overexpression abrogated the longevity increase, but did not abrogate sir-2.1 overexpression. Instead, longevity co-segregated with a second-site mutation affecting sensory neurons. Outcrossing of a line with low-copy-number sir-2.1 overexpression also abrogated longevity. A Drosophila strain with ubiquitous overexpression of dSir2 using the UAS-GAL4 system was long-lived relative to wild-type controls, as previously reported, but was not long-lived relative to the appropriate transgenic controls, and nor was a new line with stronger overexpression of dSir2. These findings underscore the importance of controlling for genetic background and for the mutagenic effects of transgene insertions in studies of genetic effects on lifespan. The life-extending effect of dietary restriction on ageing in Drosophila has also been reported to be dSir2 dependent. We found that dietary restriction increased fly lifespan independently of dSir2. Our findings do not rule out a role for sirtuins in determination of metazoan lifespan, but they do cast doubt on the robustness of the previously reported effects of sirtuins on lifespan in C. elegans and Drosophila.
Neurotoxicology | 2008
Catherine Au; Alexandre Benedetto; Michael Aschner
Manganese (Mn) is a transition metal that is essential for normal cell growth and development, but is toxic at high concentrations. While Mn deficiency is uncommon in humans, Mn toxicity is known to be readily prevalent due to occupational overexposure in miners, smelters and possibly welders. Excessive exposure to Mn can cause Parkinsons disease-like syndrome; patients typically exhibit extrapyramidal symptoms that include tremor, rigidity and hypokinesia [Calne DB, Chu NS, Huang CC, Lu CS, Olanow W. Manganism and idiopathic parkinsonism: similarities and differences. Neurology 1994;44(9):1583-6; Dobson AW, Erikson KM, Aschner M. Manganese neurotoxicity. Ann NY Acad Sci 2004;1012:115-28]. Mn-induced motor neuron diseases have been the subjects of numerous studies; however, this review is not intended to discuss its neurotoxic potential or its role in the etiology of motor neuron disorders. Rather, it will focus on Mn uptake and transport via the orthologues of the divalent metal transporter (DMT1) and its possible implications to Mn toxicity in various categories of eukaryotic systems, such as in vitro cell lines, in vivo rodents, the fruitfly, Drosophila melanogaster, the honeybee, Apis mellifera L., the nematode, Caenorhabditis elegans and the bakers yeast, Saccharomyces cerevisiae.
Neurochemistry International | 2006
Vanessa A. Fitsanakis; Catherine Au; Keith M. Erikson; Michael Aschner
Exposure to high levels of manganese (Mn) results in a neurological disorder, termed manganism, which shares a similar phenotype to Parkinsons disease due to the involvement of the basal ganglia circuitry in both. The initial symptoms of manganism are likely due to the involvement of the globus pallidus, a region rich in γ-aminobutyric acid (GABA) projections, while those of Parkinsons disease are related to the degeneration of the substantia nigra, a dopaminergic nucleus. Additionally, it is known that glutamate regulation is affected by increases in brain Mn levels. As Mn predominantly accumulates in the basal ganglia, it potentially could affect the regulation and interactions of all three neurotransmitters. This review will focus on the circuitry of these neurotransmitters within the basal ganglia and address potential sites for, as well as the temporal relationship, between Mn exposure and changes in the levels of these neurotransmitters. While most research has focused on perturbations in the dopaminergic system, there is evidence to support that early consequences of manganism also include disturbances in GABA regulation as well as glutamatergic-related excitotoxicity. Finally, we suggest that current research focus on the interdependence of these basal ganglial neurochemicals, with a greater emphasis on the GABAergic and glutamatergic systems.
PLOS Genetics | 2010
Alexandre Benedetto; Catherine Au; Daiana Silva de Ávila; Dejan Milatovic; Michael Aschner
Parkinsons disease (PD)-mimicking drugs and pesticides, and more recently PD-associated gene mutations, have been studied in cell cultures and mammalian models to decipher the molecular basis of PD. Thus far, a dozen of genes have been identified that are responsible for inherited PD. However they only account for about 8% of PD cases, most of the cases likely involving environmental contributions. Environmental manganese (Mn) exposure represents an established risk factor for PD occurrence, and both PD and Mn-intoxicated patients display a characteristic extrapyramidal syndrome primarily involving dopaminergic (DAergic) neurodegeneration with shared common molecular mechanisms. To better understand the specificity of DAergic neurodegeneration, we studied Mn toxicity in vivo in Caenorhabditis elegans. Combining genetics and biochemical assays, we established that extracellular, and not intracellular, dopamine (DA) is responsible for Mn-induced DAergic neurodegeneration and that this process (1) requires functional DA-reuptake transporter (DAT-1) and (2) is associated with oxidative stress and lifespan reduction. Overexpression of the anti-oxidant transcription factor, SKN-1, affords protection against Mn toxicity, while the DA-dependency of Mn toxicity requires the NADPH dual-oxidase BLI-3. These results suggest that in vivo BLI-3 activity promotes the conversion of extracellular DA into toxic reactive species, which, in turn, can be taken up by DAT-1 in DAergic neurons, thus leading to oxidative stress and cell degeneration.
Chemical Reviews | 2009
Alexandre Benedetto; Catherine Au; Michael Aschner
Manganese (Mn) is an abundant, naturally occurring element in the Earth’s crust. It is most frequently found in the form of oxides, carbonates, and silicates.1 It is also one out of seven essential metals for animal physiology. Mn is a cofactor for many enzymes, such as transferases, hydrolases, lyases, arginase, glutamine synthetase, and superoxide dismutase, and it is also found in integrins.2,3 The well-studied Mn-containing proteins are arginase, an enzyme present in lipids that is required for ammonia elimination, and Mn-containing superoxide dismutase (Mn-SOD), a principal antioxidant enzyme typically found in the mitochondria. Given the dependence of multiple enzymes on Mn, it is essential for various physiological processes, such as modulation of the immune system, stellate process production in astrocytes, cell adhesion, and protein and carbohydrate metabolism.4-8 Mn also plays an important role in the development and functioning of the brain and skeletal structures.9,10 Mn deficiency may result in birth defects, poor bone formation and increased susceptibility to seizures.11,12 Despite being essential for metabolic functions, excessive exposure to Mn is a well-recognized occupational hazard, and inhalation of particulate Mn compounds is associated with lung inflammation, characterized by cough, bronchitis, pneumonitis, and impaired pulmonary function in human, primates,13-19 and nasal epithelium inflammation in rodents.20 Impotence and loss of libido have also been reported in male workers with high Mn exposures,21,22 possibly due to the importance of arginase in those functions.23 Though most Mn is obtained through the diet, Mn toxicity from dietary intake is rare,24,25 because Mn balance is tightly regulated by both the enterocytes (intake) and the biliary duct cells (excretion). In contrast, pulmonary uptake and particulate transport via the olfactory bulb26-28 can lead to deposition of Mn within the striatum and cerebellum, and inflammation of the nasal epithelium.20 Occupational exposure to Mn for periods from 6 months to 2 years can cause an extrapyramidal syndrome, referred to as manganism, closely resembling idiopathic Parkinson’s disease (IPD, see below), at both the molecular and clinical levels.29-31 Manganism represents a progressive Parkinsonism syndrome with a dystonic gait disorder (“cock gait”). Patients suffering from manganism exhibit a signature biphasic mode of physical decline, which comprises of an initial phase of psychiatric disturbance including rare cases of emotional lability, and neurological deficits which are followed by motor defects such as akinetic rigidity, dystonia, and bradyskinesia.29,31 Mn exposure represents a significant public health matter due to the use of Mn as a catalyzer in countless * To whom correspondence should be addressed. 2215-B Garland Avenue, 11425 MRB IV, Vanderbilt University Medical Center, Nashville, TN 37232-0414. Telephone: 615-322-8024. Fax: 615-936-4080. E-mail: [email protected]. † Department of Pediatrics. ‡ Center for Molecular Neuroscience. § Department of Pharmacology. | Kennedy Center for Research on Human Development. Chem. Rev. 2009, 109, 4862–4884 4862
PLOS ONE | 2009
Catherine Au; Alexandre Benedetto; Joel G. Anderson; Arnaud Labrousse; Keith M. Erikson; Jonathan J. Ewbank; Michael Aschner
Manganese (Mn) is an essential metal that can exert toxic effects at high concentrations, eventually leading to Parkinsonism. A major transporter of Mn in mammals is the divalent-metal transporter (DMT1). We characterize here DMT1-like proteins in the nematode C. elegans, which regulate and are regulated by Mn and iron (Fe) content. We identified three new DMT1-like genes in C. elegans: smf-1, smf-2 and smf-3. All three can functionally substitute for loss of their yeast orthologues in S. cerevisiae. In the worm, deletion of smf-1 or smf-3 led to an increased Mn tolerance, while loss of smf-2 led to increased Mn sensitivity. smf mRNA levels measured by QRT-PCR were up-regulated upon low Mn and down-regulated upon high Mn exposures. Translational GFP-fusions revealed that SMF-1 and SMF-3 strongly localize to partially overlapping apical regions of the gut epithelium, suggesting a differential role for SMF-1 and SMF-3 in Mn nutritional intake. Conversely, SMF-2 was detected in the marginal pharyngeal epithelium, possibly involved in metal-sensing. Analysis of metal content upon Mn exposure in smf mutants revealed that SMF-3 is required for normal Mn uptake, while smf-1 was dispensable. Higher smf-2 mRNA levels correlated with higher Fe content, supporting a role for SMF-2 in Fe uptake. In smf-1 and smf-3 but not in smf-2 mutants, increased Mn exposure led to decreased Fe levels, suggesting that both metals compete for transport by SMF-2. Finally, SMF-3 was post-translationally and reversibly down-regulated following Mn-exposure. In sum, we unraveled a complex interplay of transcriptional and post-translational regulations of 3 DMT1-like transporters in two adjacent tissues, which regulate metal-content in C. elegans.
Brain Research | 2008
A.P. Marreilha dos Santos; Dinamene Santos; Catherine Au; Dejan Milatovic; Michael Aschner; M. Camila Batoréu
Manganese (Mn) is an essential trace element required for ubiquitous enzymatic reactions. Chronic overexposure to this metal may, however, promote potent neurotoxic effects. The mechanism of Mn toxicity is not well established, but several studies indicate that oxidative stress and mitochondria play major roles in the Mn-induced neurodegenerative processes that lead to dysfunction in the basal ganglia. The aim of this study was to address the toxic effects of MnCl2 and MnSO4 on the immortalized rat brain microvessel endothelial cell line (RBE4) and to characterize toxic mechanism associated with exposure to Mn. The cytotoxicity of Mn in RBE4 cells was evaluated using the LDH and the MTT assays. A significant increase was noted in LDH release from RBE4 cells exposed for 24 h to MnCl2 at concentrations of 800 microM and MnSO4 at concentrations > or = 400 microM (p < 0.05) when compared with control unexposed cells. The MTT assay established significant decrease in cellular viability upon exposure to MnCl2 at concentrations > or = 100 microM and to MnSO4 at concentrations > or = 50 microM (p < 0.05). Thus, the cytotoxicity assays showed that the MTT assay was more sensitive than the LDH assay, suggesting that mitochondrial changes precede other toxic effects of Mn. In addition, upon exposure to MnCl2 (200 and 800 microM), intracellular reduced glutathione (GSH) levels in RBE4 cells decreased as Mn exposure concentrations increased (p < 0.05). To confirm the oxidative hypothesis of Mn cytotoxicity, co-exposure of MnCl2 with antioxidant agents (N-acetylcysteine [NAC] or Trolox) were carried out. The cellular viability was evaluated using the MTT assay. A significant decrease in Mn cytotoxicity was observed in co-exposed cells confirming that (1) oxidative stress plays a critical role in the mechanism of Mn toxicity, and (2) antioxidants may offer a useful therapeutic modality to reverse the aberrant effects of Mn.
Free Radical Biology and Medicine | 2012
Daiana Silva de Ávila; Alexandre Benedetto; Catherine Au; Flávia Manarin; Keith M. Erikson; Félix Alexandre Antunes Soares; João Batista Teixeira da Rocha; Michael Aschner
Organochalcogens have been widely studied given their antioxidant activity, which confers neuroprotection, antiulcer, and antidiabetic properties. Given the complexity of mammalian models, understanding the cellular and molecular effects of organochalcogens has been hampered. The nematode worm Caenorhabditis elegans is an alternative experimental model that affords easy genetic manipulations, green fluorescent protein tagging, and in vivo live analysis of toxicity. We previously showed that manganese (Mn)-exposed worms exhibit oxidative-stress-induced neurodegeneration and life-span reduction. Here we use Mn-exposed worms as a model for an oxidatively challenged organism to investigate the underlying mechanisms of organochalcogen antioxidant properties. First, we recapitulate in C. elegans the effects of organochalcogens formerly observed in mice, including their antioxidant activity. This is followed by studies on the ability of these compounds to afford protection against Mn-induced toxicity. Diethyl-2-phenyl-2-tellurophenyl vinyl phosphonate (DPTVP) was the most efficacious compound, fully reversing the Mn-induced reduction in survival and life span. Ebselen was also effective, reversing the Mn-induced reduction in survival and life span, but to a lesser extent compared with DPTVP. DPTVP also lowered Mn-induced increases in oxidant levels, indicating that the increased survival associated with exposure to this compound is secondary to a decrease in oxidative stress. Furthermore, DPTVP induced nuclear translocation of the transcriptional factor DAF-16/FOXO, which regulates stress responsiveness and aging in worms. Our findings establish that the organochalcogens DPTVP and ebselen act as antiaging agents in a model of Mn-induced toxicity and aging by regulating DAF-16/FOXO signaling and attenuating oxidative stress.
PLOS Genetics | 2014
Jennifer M. A. Tullet; Caroline Araiz; Matthew J. Sanders; Catherine Au; Alexandre Benedetto; Irene Papatheodorou; Emily Clark; Kathrin Schmeisser; Daniel Jones; Eugene Schuster; Janet M. Thornton; David Gems
The DAF-16/FoxO transcription factor controls growth, metabolism and aging in Caenorhabditis elegans. The large number of genes that it regulates has been an obstacle to understanding its function. However, recent analysis of transcript and chromatin profiling implies that DAF-16 regulates relatively few genes directly, and that many of these encode other regulatory proteins. We have investigated the regulation by DAF-16 of genes encoding the AMP-activated protein kinase (AMPK), which has α, β and γ subunits. C. elegans has 5 genes encoding putative AMP-binding regulatory γ subunits, aakg-1-5. aakg-4 and aakg-5 are closely related, atypical isoforms, with orthologs throughout the Chromadorea class of nematodes. We report that ∼75% of total γ subunit mRNA encodes these 2 divergent isoforms, which lack consensus AMP-binding residues, suggesting AMP-independent kinase activity. DAF-16 directly activates expression of aakg-4, reduction of which suppresses longevity in daf-2 insulin/IGF-1 receptor mutants. This implies that an increase in the activity of AMPK containing the AAKG-4 γ subunit caused by direct activation by DAF-16 slows aging in daf-2 mutants. Knock down of aakg-4 expression caused a transient decrease in activation of expression in multiple DAF-16 target genes. This, taken together with previous evidence that AMPK promotes DAF-16 activity, implies the action of these two metabolic regulators in a positive feedback loop that accelerates the induction of DAF-16 target gene expression. The AMPK β subunit, aakb-1, also proved to be up-regulated by DAF-16, but had no effect on lifespan. These findings reveal key features of the architecture of the gene-regulatory network centered on DAF-16, and raise the possibility that activation of AMP-independent AMPK in nutritionally replete daf-2 mutant adults slows aging in C. elegans. Evidence of activation of AMPK subunits in mammals suggests that such FoxO-AMPK interactions may be evolutionarily conserved.