Catherine Birck
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Catherine Birck.
Structure | 1999
Catherine Birck; Lionel Mourey; Patrice Gouet; Béatrice Fabry; Jörg Schumacher; Philippe Rousseau; Daniel Kahn; Jean-Pierre Samama
BACKGROUND A variety of bacterial adaptative cellular responses to environmental stimuli are mediated by two-component signal transduction pathways. In these phosphorelay cascades, histidine kinases transphosphorylate a conserved aspartate in the receiver domain, a conserved module in the response regulator superfamily. The main effect of this phosphorylation is to alter the conformation of the response regulator in order to modulate its biological function. The response regulator FixJ displays a typical modular arrangement, with a phosphorylatable N-terminal receiver domain and a C-terminal DNA-binding domain. In the symbiotic bacterium Sinorhizobium meliloti, phosphorylation of this response regulator activates transcription of nitrogen-fixation genes. RESULTS The crystal structures of the phosphorylated and of the unphosphorylated N-terminal receiver domain of FixJ (FixJN) were solved at 2.3 A and 2.4 A resolution, respectively. They reveal the environment of the phosphoaspartate in the active site and the specific conformational changes leading to activation of the response regulator. Phosphorylation of the conserved aspartate induces major structural changes in the beta 4-alpha 4 loop, and in the signaling surface alpha 4-beta 5 that mediates dimerization of the phosphorylated full-length response regulator. A site-directed mutant at this protein-protein interface decreases the affinity of the phosphorylated response regulator for the fixK promoter tenfold. CONCLUSIONS The cascade of phosphorylation-induced conformational changes in FixJN illustrates the role of conserved residues in stabilizing the phosphoryl group in the active site, triggering the structural transition and achieving the post-phosphorylation signaling events. We propose that these phosphorylation-induced conformational changes underly the activation of response regulators in general.
Structure | 2003
Samuel Tranier; Chantal Iobbi-Nivol; Catherine Birck; Marianne Ilbert; Isabelle Mortier-Barrière; Vincent Méjean; Jean-Pierre Samama
TorD is the cytoplasmic chaperone involved in the maturation of the molybdoenzyme TorA prior to the translocation of the folded protein into the periplasm. The X-ray structure at 2.4 A resolution of the TorD dimer reveals extreme domain swapping between the two subunits. The all-helical architecture of the globular domains within the intertwined molecular dimer shows no similarity with known protein structures. According to sequence similarities, this new fold probably represents the architecture of the chaperones associated with the bacterial DMSO/TMAO reductases and also that of proteins of yet unknown functions. The occurrence of multiple oligomeric forms and the chaperone activity of both monomeric and dimeric TorD raise questions about the possible biological role of domain swapping in this protein.
Structure | 1999
Patrice Gouet; Béatrice Fabry; Valérie Guillet; Catherine Birck; Lionel Mourey; Daniel Kahn; Jean-Pierre Samama
BACKGROUND Two-component signal transduction pathways are sophisticated phosphorelay cascades widespread in prokaryotes and also found in fungi, molds and plants. FixL/FixJ is a prototypical system responsible for the regulation of nitrogen fixation in the symbiotic bacterium Sinorhizobium meliloti. In microaerobic conditions the membrane-bound kinase FixL uses ATP to transphosphorylate a histidine residue, and the response regulator FixJ transfers the phosphoryl group from the phosphohistidine to one of its own aspartate residues in a Mg(2+)-dependent mechanism. RESULTS Seven X-ray structures of the unphosphorylated N-terminal receiver domain of FixJ (FixJN) have been solved from two crystal forms soaked in different conditions. Three conformations of the protein were found. In the first case, the protein fold impairs metal binding in the active site and the structure reveals a receiver domain that is self-inhibited for catalysis. In the second conformation, the canonical geometry of the active site is attained, and subsequent metal binding to the protein induces minimal conformational changes. The third conformation illustrates a non-catalytic form of the protein where unwinding of the N terminus of helix alpha 1 has occurred. Interconversion of the canonical and self-inhibited conformations requires a large conformational change of the beta 3-alpha 3 loop region. CONCLUSIONS These unphosphorylated structures of FixJN stress the importance of flexible peptide segments that delineate the active site. Their movements may act as molecular switches that define the functional status of the protein. Such observations are in line with structural and biochemical results obtained on other response regulator proteins and may illustrate general features that account for the specificity of protein-protein interactions.
Journal of Bacteriology | 2003
Catherine Birck; Yinghua Chen; F.M Hulett; Jean-Pierre Samama
PhoP from Bacillus subtilis belongs to the OmpR subfamily of response regulators. It regulates the transcription of several operons and participates in a signal transduction network that controls adaptation of the bacteria to phosphate deficiency. The receiver domains of two members of this subfamily, PhoB from Escherichia coli and DrrD from Thermotoga maritima, have been structurally characterized. These modules have similar overall folds but display remarkable differences in the conformation of the beta4-alpha4 and alpha4 regions. The crystal structure of the receiver domain of PhoP (PhoPN) described in this paper illustrates yet another geometry in this region. Another major issue of the structure determination is the dimeric state of the protein and the novel mode of association between receiver domains. The protein-protein interface is provided by two different surfaces from each protomer, and the tandem unit formed through this asymmetric interface leaves free interaction surfaces. This design is well suited for further association of PhoP dimers to form oligomeric structures. The interprotein interface buries 970 A(2) from solvent and mostly involves interactions between charged residues. As described in the accompanying paper, mutations of a single residue in one salt bridge shielded from solvent prevented dimerization of the unphosphorylated and phosphorylated response regulator and had drastic functional consequences. The three structurally documented members of the OmpR family (PhoB, DrrD, and PhoP) provide a framework to consider possible relationships between structural features and sequence signatures in critical regions of the receiver domains.
Protein Science | 2009
Samuel Tranier; Isabelle Mortier-Barrière; Marianne Ilbert; Catherine Birck; Chantal Iobbi-Nivol; Vincent Méjean; Jean-Pierre Samama
Several bacteria use trimethylamine N‐oxyde (TMAO) as an exogenous electron acceptor for anaerobic respiration. This metabolic pathway involves expression of the tor operon that codes for a periplasmic molybdopterin‐containing reductase of the DMSO/TMAO family, a pentahemic c‐type cytochrome, and the TorD cytoplasmic chaperone, possibly required for acquisition of the molybdenum cofactor and translocation of the reductase by the twin‐arginine translocation system. In this report, we show that the TorD chaperone from Shewanella massilia forms multiple and stable oligomeric species. The monomeric, dimeric, and trimeric forms were purified to homogeneity and characterized by analytical ultracentrifugation. Small‐angle X‐ray scattering (SAXS) and preliminary diffraction data indicated that the TorD dimer is made of identical protein modules of similar size to the monomeric species. Interconversion of the native oligomeric forms occurred at acidic pH value. In this condition, ANS fluorescence indicates a non‐native conformation of the polypeptide chain in which, according to the circular dichroism spectra, the α‐helical content is similar to that of the native species. Surface plasmon resonance showed that both the monomeric and dimeric species bind the mature TorA enzyme, but that the dimer binds its target protein more efficiently. The possible biologic significance of these oligomers is discussed in relation to the chaperone activity of TorD, and to the ability of another member of the TorD family to bind the Twin Arginine leader sequences of the precursor of DMSO/TMAO reductases.
Microbes and Infection | 2001
Marie Foussard; Stéphanie Cabantous; Jean-Denis Pédelacq; Valérie Guillet; Samuel Tranier; Lionel Mourey; Catherine Birck; Jean-Pierre Samama
Two-component systems constitute prevalent signaling pathways in bacteria and mediate a large variety of adaptative cellular responses. Signaling proceeds through His-Asp phosphorelay cascades that involve two central partners, the histidine protein kinase and the response regulator protein. Structural studies have provided insights into some design principles and activation mechanisms of these multi-domain proteins implicated in the control of virulence gene expression in several pathogens.
Journal of Biological Chemistry | 1998
Lionel Mourey; Jean-Denis Pédelacq; Catherine Birck; Christine Fabre; Pierre Rougé; Jean-Pierre Samama
Arcelin-1 is a glycoprotein from kidney beans (Phaseolus vulgaris) which displays insecticidal properties and protects the seeds from predation by larvae of various bruchids. This lectin-like protein is devoid of monosaccharide binding properties and belongs to the phytohemagglutinin protein family. The x-ray structure determination at 1.9-Å resolution of native arcelin-1 dimers, which correspond to the functional state of the protein in solution, was solved using multiple isomorphous replacement and refined to a crystallographic R factor of 0.208. The three glycosylation sites on each monomer are all covalently modified. One of these oligosaccharide chains provides interactions with protein atoms at the dimer interface, and another one may act by preventing the formation of higher oligomeric species in the arcelin variants. The dimeric structure and the severe alteration of the monosaccharide binding site in arcelin-1 correlate with the hemagglutinating properties of the protein, which are unaffected by simple sugars and sugar derivatives. Sequence analysis and structure comparisons of arcelin-1 with the other insecticidal proteins from kidney beans, arcelin-5, and α-amylase inhibitor and with legume lectins, yield insights into the molecular basis of the different biological functions of these proteins.
Journal of Molecular Biology | 2002
Catherine Birck; Marc Malfois; Dmitri I. Svergun; Jean-Pierre Samama
Two-component regulatory systems mediate most of the bacterial cells responses to a variety of signals. In Sinorhizobium meliloti, the FixL-FixJ couple controls the expression of the nitrogen fixation genes through the binding of the two-domains response regulator FixJ to the fixK and nifA promoters. Phosphorylation of the N-terminal regulatory domain activates the protein and releases the inhibition of the C-terminal DNA-binding domain that occurs in the unphosphorylated protein. Insights into the transition from the inactive to the active form are provided by the architecture of the unphosphorylated response regulator reported in this study. The relative position and orientation of the N and C-terminal domains were defined from the molecular envelope restored from small-angle X-ray scattering (SAXS) data. The involvement of the alpha4-beta5-alpha5 surface of the regulatory domain, the linker region and the C-terminal helix of the DNA-binding domain in the interdomain interface of unphosphorylated FixJ was supported by biochemical investigations. These results, together with the previously reported studies on the phosphorylated regulatory domain of FixJ, emphasize the role of the alpha4-beta5-alpha5 surface in mediating a flow of information in this response regulator. This first study by SAXS of proteins from two-component systems suggests that the method could be successfully applied to other members of this family and could be suitable for the study of multidomain proteins and protein-protein complexes regulated through molecular interfaces in the low micromolar range.
Nucleic Acids Research | 2014
Heena Khatter; Alexander G. Myasnikov; Leslie Mastio; Isabelle M. L. Billas; Catherine Birck; Stefano Stella; Bruno P. Klaholz
Ribosomes are key macromolecular protein synthesis machineries in the cell. Human ribosomes have so far not been studied to atomic resolution because of their particularly complex structure as compared with other eukaryotic or prokaryotic ribosomes, and they are difficult to prepare to high homogeneity, which is a key requisite for high-resolution structural work. We established a purification protocol for human 80S ribosomes isolated from HeLa cells that allows obtaining large quantities of homogenous samples as characterized by biophysical methods using analytical ultracentrifugation and multiangle laser light scattering. Samples prepared under different conditions were characterized by direct single particle imaging using cryo electron microscopy, which helped optimizing the preparation protocol. From a small data set, a 3D reconstruction at subnanometric resolution was obtained showing all prominent structural features of the human ribosome, and revealing a salt concentration dependence of the presence of the exit site tRNA, which we show is critical for obtaining crystals. With these well-characterized samples first human 80S ribosome crystals were obtained from several crystallization conditions in capillaries and sitting drops, which diffract to 26 Å resolution at cryo temperatures and for which the crystallographic parameters were determined, paving the way for future high-resolution work.
Acta Crystallographica Section D-biological Crystallography | 2001
Patrice Gouet; N. Chinardet; M. Welch; Valérie Guillet; Stéphanie Cabantous; Catherine Birck; Lionel Mourey; Jean-Pierre Samama
New crystallographic structures of the response regulator CheY in association with CheA(124--257), its binding domain in the kinase CheA, have been determined. In all crystal forms, the molecular interactions at the heterodimer interface are identical. Soaking experiments have been performed on the crystals using acetyl phosphate as phosphodonor to CheY. No phosphoryl group attached to Asp57 of CheY is visible from the electron density, but the response regulator in the CheY-CheA(124--257) complex may have undergone a phosphorylation-dephosphorylation process. The distribution of water molecules and the geometry of the active site have changed and are now similar to those of isolated CheY. In a second soaking experiment, imido-diphosphate, an inhibitor of the phosphorylation reaction, was used. This compound binds in the vicinity of the active site, close to the N-terminal part of the first alpha-helix. Together, these results suggest that the binding of CheY to CheA(124--257) generates a geometry of the active site that favours phosphorylation and that imido-diphosphate interferes with phosphorylation by precluding structural changes in this region.