Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine C. Davis is active.

Publication


Featured researches published by Catherine C. Davis.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Vaginal microbiome of reproductive-age women

Jacques Ravel; Pawel Gajer; Zaid Abdo; G. Maria Schneider; Sara S. K. Koenig; Stacey L. McCulle; Shara Karlebach; Reshma Gorle; Jennifer Russell; Carol O. Tacket; Rebecca M. Brotman; Catherine C. Davis; Kevin A. Ault; Ligia Peralta; Larry J. Forney

The means by which vaginal microbiomes help prevent urogenital diseases in women and maintain health are poorly understood. To gain insight into this, the vaginal bacterial communities of 396 asymptomatic North American women who represented four ethnic groups (white, black, Hispanic, and Asian) were sampled and the species composition characterized by pyrosequencing of barcoded 16S rRNA genes. The communities clustered into five groups: four were dominated by Lactobacillus iners, L. crispatus, L. gasseri, or L. jensenii, whereas the fifth had lower proportions of lactic acid bacteria and higher proportions of strictly anaerobic organisms, indicating that a potential key ecological function, the production of lactic acid, seems to be conserved in all communities. The proportions of each community group varied among the four ethnic groups, and these differences were statistically significant [χ2(10) = 36.8, P < 0.0001]. Moreover, the vaginal pH of women in different ethnic groups also differed and was higher in Hispanic (pH 5.0 ± 0.59) and black (pH 4.7 ± 1.04) women as compared with Asian (pH 4.4 ± 0.59) and white (pH 4.2 ± 0.3) women. Phylotypes with correlated relative abundances were found in all communities, and these patterns were associated with either high or low Nugent scores, which are used as a factor for the diagnosis of bacterial vaginosis. The inherent differences within and between women in different ethnic groups strongly argues for a more refined definition of the kinds of bacterial communities normally found in healthy women and the need to appreciate differences between individuals so they can be taken into account in risk assessment and disease diagnosis.


Antimicrobial Agents and Chemotherapy | 2003

Comparative Molecular Analysis of Community- or Hospital-Acquired Methicillin-Resistant Staphylococcus aureus

P. D. Fey; B. Saïd-Salim; M. E. Rupp; S. H. Hinrichs; D. J. Boxrud; Catherine C. Davis; Barry N. Kreiswirth; Patrick M. Schlievert

ABSTRACT Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) is a growing public health concern that has been associated with pediatric fatalities. It is hypothesized that the evolution of CA-MRSA is a recent event due to the acquisition of mec DNA by previously methicillin-susceptible strains that circulated in the community. This study investigated the genetic relatedness between CA-MRSA, hospital-associated MRSA (HA-MRSA), and nonmenstrual toxic shock syndrome (nmTSS) isolates. Thirty-one of 32 CA-MRSA isolates were highly related as determined by pulsed-field gel electrophoresis and spa typing yet were distinguishable from 32 HA-MRSA strains. The 31 related CA-MRSA isolates produced either staphylococcal enterotoxin B (n = 5) or C (n = 26), and none made TSS toxin 1. All CA-MRSA isolates tested contained a type IV staphylococcal cassette chromosome mec (SCCmec) element. In comparison, none of the HA-MRSA isolates (n = 32) expressed the three superantigens. Antibiotic susceptibility patterns were different between the CA-MRSA and HA-MRSA isolates; CA-MRSA was typically resistant only to β-lactam antibiotics. Six of twenty-one nmTSS isolates were indistinguishable or highly related to the CA-MRSA isolates. MnCop, an nmTSS isolate obtained in Alabama in 1986, was highly related to the CA-MRSA isolates except that it did not contain an SCCmec element. These data suggest that CA-MRSA strains may represent a new acquisition of SCCmec DNA in a previously susceptible genetic background that was capable of causing nmTSS. CA-MRSA poses a serious health risk not only because it is resistant to the antibiotics of choice for community-acquired staphylococcal infections but also because of its ability to cause nmTSS via superantigen production.


The ISME Journal | 2007

Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women

Xia Zhou; Celeste J. Brown; Zaid Abdo; Catherine C. Davis; Melanie A. Hansmann; Paul Joyce; James A. Foster; Larry J. Forney

The maintenance of a low pH in the vagina through the microbial production of lactic acid is known to be an important defense against infectious disease in reproductive age women. Previous studies have shown that this is largely accomplished through the metabolism of lactic acid bacteria, primarily species of Lactobacillus. Despite the importance of this defense mechanism to womens health, differences in the species composition of vaginal bacterial communities among women have not been well defined, nor is it known if and how these differences might be linked to differences in the risk of infection. In this study, we defined and compared the species composition of vaginal bacterial communities in 144 Caucasian and black women in North America. This was carried out based on the profiles of terminal restriction fragments of 16S rRNA genes, and phylogenetic analysis of 16S rRNA gene sequences of the numerically dominant microbial populations. Among all the women sampled, there were eight major kinds of vaginal communities (‘supergroups’) that occurred in the general populace at a frequency of at least 0.05 (P=0.99). From the distribution of these supergroups among women, it was possible to draw several conclusions. First, there were striking, statistically significant differences (P=0.0) in the rank abundance of community types among women in these racial groups. Second, the incidence of vaginal communities in which lactobacilli were not dominant was higher in black women (33%) as compared to Caucasian women (7%). Communities not dominated by lactobacilli had Atopobium and a diverse array of phylotypes from the order Clostridiales. Third, communities dominated by roughly equal numbers of more than one species of Lactobacillus were rare in black women, but common in Caucasian women. We postulate that because of these differences in composition, not all vaginal communities are equally resilient, and that differences in the vaginal microbiota of Caucasian and black women may at least partly account for known disparities in the susceptibility of women in these racial groups to bacterial vaginosis and sexually transmitted diseases.


Infection and Immunity | 2005

The Innate Immune System Is Activated by Stimulation of Vaginal Epithelial Cells with Staphylococcus aureus and Toxic Shock Syndrome Toxin 1

Marnie L. Peterson; Kevin A. Ault; Mary Kremer; Aloysius J. Klingelhutz; Catherine C. Davis; Christopher A. Squier; Patrick M. Schlievert

ABSTRACT Despite knowledge of the effects of toxic shock syndrome (TSS) toxin 1 (TSST-1) on the adaptive immune system, little is known about stimulation of the innate immune system, particularly epithelial cells. This study investigated the interactions of TSS Staphylococcus aureus and TSST-1 with human vaginal epithelial cells (HVECs) and porcine mucosal surfaces. When cocultured with HVECs for 6 h, TSS S. aureus MN8 proliferated, formed aggregates on the HVEC surfaces, and produced exotoxins. Receptor binding studies showed that 35S-TSST-1 bound to 5 × 104 receptors per HVEC, with saturation at 15 min. Affymetrix Human GeneChip U133A microarray analysis determined S. aureus MNSM (100 bacteria/HVEC) caused at least twofold up- or down-regulation of 410 HVEC genes by 6 h; these data were also confirmed with S. aureus MN8. TSST-1 (100 μg/ml) caused up- or down-regulation of 2,386 HVEC genes by 6 h. In response to S. aureus, the HVEC genes most up-regulated compared to those in controls were those coding for chemokines or cytokines—MIP-3α, 478-fold; GRO-α, 26-fold; GRO-β, 14-fold; and GRO-γ, 30-fold—suggesting activation of innate immunity. TSST-1 also caused up-regulation of chemokine/cytokine genes. Chemokine/cytokine gene up-regulation was confirmed by enzyme-linked immunosorbent assays measuring the corresponding proteins induced by S. aureus and TSST-1. S. aureus MN8, when incubated with porcine vaginal tissue, increased the flux of 35S-TSST-1 across the mucosal surface. This was accompanied by influx of lymphocytes into the upper layers of the tissue. These data suggest innate immune system activation through epithelial cells, reflected in chemokine/cytokine production and influx of lymphocytes, may cause changes in vaginal mucosa permeability, facilitating TSST-1 penetration.


Fems Immunology and Medical Microbiology | 2010

The vaginal bacterial communities of Japanese women resemble those of women in other racial groups

Xia Zhou; Melanie A. Hansmann; Catherine C. Davis; Haruo Suzuki; Celeste J. Brown; Ursel M. E. Schütte; Jacob D. Pierson; Larry J. Forney

To determine whether different racial groups shared common types of vaginal microbiota, we characterized the composition and structure of vaginal bacterial communities in asymptomatic and apparently healthy Japanese women in Tokyo, Japan, and compared them with those of White and Black women from North America. The composition of vaginal communities was compared based on community profiles of terminal restriction fragments of 16S rRNA genes and phylogenetic analysis of cloned 16S rRNA gene sequences of the numerically dominant bacterial populations. The types of vaginal communities found in Japanese women were similar to those of Black and White women. As with White and Black women, most vaginal communities were dominated by lactobacilli, and only four species of Lactobacillus (Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensenii, and Lactobacillus gasseri) were commonly found. Communities dominated by multiple species of lactobacilli were common in Japanese and White women, but rare in Black women. The incidence, in Japanese women, of vaginal communities with several non-Lactobacillus species at moderately high frequencies was intermediate between Black women and White women. The limited number of community types found among women in different ethnic groups suggests that host genetic factors, including the innate and adaptive immune systems, may be more important in determining the species composition of vaginal bacterial communities than are cultural and behavioral differences.


The Journal of Infectious Diseases | 2003

Detection of Staphylococcus aureus Biofilm on Tampons and Menses Components

Richard Harold Veeh; Mark E. Shirtliff; Jill R. Petik; Janine A. Flood; Catherine C. Davis; Jon L. Seymour; Melanie A. Hansmann; Kathy M. Kerr; Mark Pasmore; John William Costerton

Culturing has detected vaginal Staphylococcus aureus in 10%-20% of women. Because growth mode can affect virulence expression, this study examined S. aureus-biofilm occurrence in 44 paired-tampon and vaginal-wash-specimens from 18 prescreened women, using fluorescent in situ hybridization (FISH). All 44 specimens were also analyzed for S. aureus by standard culturing on mannitol salt agar, which produced positive results for 15 of the 44 specimens. FISH detected S. aureus cells in all 44 specimens, and S. aureus biofilm was observed in 37 of the 44 specimens. Independent confirmation of the presence of S. aureus in specimens from all 18 women was also obtained by amplification, via polymerase chain reaction, of an S. aureus-specific nuclease gene. The results of this study demonstrate that S. aureus biofilm can form on tampons and menses components in vivo. Additionally, the prevalence of vaginal S. aureus carriage may be more prevalent than what is currently demonstrated by standard culturing techniques.


BMC Oral Health | 2011

Preliminary characterization of the oral microbiota of Chinese adults with and without gingivitis

Shi Huang; Fang Yang; Xiaowei Zeng; Jie Chen; Rui Li; Ting Wen; Chun Li; Wei Wei; Jiquan Liu; Lan Chen; Catherine C. Davis; Jian Xu

BackgroundMicrobial communities inhabiting human mouth are associated with oral health and disease. Previous studies have indicated the general prevalence of adult gingivitis in China to be high. The aim of this study was to characterize in depth the oral microbiota of Chinese adults with or without gingivitis, by defining the microbial phylogenetic diversity and community-structure using highly paralleled pyrosequencing.MethodsSix non-smoking Chinese, three with and three without gingivitis (age range 21-39 years, 4 females and 2 males) were enrolled in the present cross-sectional study. Gingival parameters of inflammation and bleeding on probing were characterized by a clinician using the Mazza Gingival Index (MGI). Plaque (sampled separately from four different oral sites) and salivary samples were obtained from each subject. Sequences and relative abundance of the bacterial 16 S rDNA PCR-amplicons were determined via pyrosequencing that produced 400 bp-long reads. The sequence data were analyzed via a computational pipeline customized for human oral microbiome analyses. Furthermore, the relative abundances of selected microbial groups were validated using quantitative PCR.ResultsThe oral microbiomes from gingivitis and healthy subjects could be distinguished based on the distinct community structures of plaque microbiomes, but not the salivary microbiomes. Contributions of community members to community structure divergence were statistically accessed at the phylum, genus and species-like levels. Eight predominant taxa were found associated with gingivitis: TM7, Leptotrichia, Selenomonas, Streptococcus, Veillonella, Prevotella, Lautropia, and Haemophilus. Furthermore, 98 species-level OTUs were identified to be gingivitis-associated, which provided microbial features of gingivitis at a species resolution. Finally, for the two selected genera Streptococcus and Fusobacterium, Real-Time PCR based quantification of relative bacterial abundance validated the pyrosequencing-based results.ConclusionsThis methods study suggests that oral samples from this patient population of gingivitis can be characterized via plaque microbiome by pyrosequencing the 16 S rDNA genes. Further studies that characterize serial samples from subjects (longitudinal study design) with a larger population size may provide insight into the temporal and ecological features of oral microbial communities in clinically-defined states of gingivitis.


Journal of Clinical Microbiology | 2010

Comparison of Self-Collected and Physician-Collected Vaginal Swabs for Microbiome Analysis

Larry J. Forney; Pawel Gajer; Christopher J. Williams; G. Maria Schneider; Sara S. K. Koenig; Stacey L. McCulle; Shara Karlebach; Rebecca M. Brotman; Catherine C. Davis; Kevin A. Ault; Jacques Ravel

ABSTRACT To our knowledge, no data are available on whether the microbial species composition and abundance sampled with self-collected vaginal swabs are comparable to those of swabs collected by clinicians. Twenty healthy women were recruited to the study during a routine gynecological visit. Eligible women were between 18 and 40 years old with regular menstrual cycles. Participants self-collected a vaginal swab using a standardized protocol and then were examined by a physician, who collected an additional five swabs from the lateral wall of the mid-vagina. In this study, the self-collected and three physician-obtained swabs were analyzed and compared using terminal restriction fragment length polymorphism and sequence analyses of the 16S rRNA genes. Vaginal microbial community comparative statistical analyses of both T-RFLP and 16S rRNA gene sequence datasets revealed that self-collected vaginal swabs sampled the same microbial diversity as physician collected swabs of the mid-vagina. These findings enable large-scale, field-based studies of the vaginal microbiome.


Applied and Environmental Microbiology | 2005

Characterization of Microbial Communities Found in the Human Vagina by Analysis of Terminal Restriction Fragment Length Polymorphisms of 16S rRNA Genes

Marco J. L. Coolen; Eduard Post; Catherine C. Davis; Larry J. Forney

ABSTRACT To define and monitor the structure of microbial communities found in the human vagina, a cultivation-independent approach based on analyses of terminal restriction fragment length polymorphisms (T-RFLP) of 16S rRNA genes was developed and validated. Sixteen bacterial strains commonly found in the human vagina were used to construct model communities that were subsequently used to develop efficient means for the isolation of genomic DNA and an optimal strategy for T-RFLP analyses. The various genera in the model community could best be resolved by digesting amplicons made using bacterial primers 8f and 926r with HaeIII; fewer strains could be resolved using other primer-enzyme combinations, and no combination successfully distinguished certain species of the same genus. To demonstrate the utility of the approach, samples from five women that had been collected over a 2-month period were analyzed. Differences and similarities among the vaginal microbial communities of the women were readily apparent. The T-RFLP data suggest that the communities of three women were dominated by a single phylotype, most likely species of Lactobacillus. In contrast, the communities of two other women included numerically abundant populations that differed from Lactobacillus strains whose 16S rRNA genes had been previously determined. The T-RFLP profiles of samples from all the women were largely invariant over time, indicating that the kinds and abundances of the numerically dominant populations were relatively stable throughout two menstrual cycles. These findings show that T-RFLP of 16S rRNA genes can be used to compare vaginal microbial communities and gain information about the numerically dominant populations that are present.


American Journal of Obstetrics and Gynecology | 2003

Penetration of toxic shock syndrome toxin-1 across porcine vaginal mucosa ex vivo: permeability characteristics, toxin distribution, and tissue damage.

Catherine C. Davis; Mary Kremer; Patrick M. Schlievert; Christopher A Squier

OBJECTIVE The purpose of this study was to evaluate transvaginal penetration of toxic shock syndrome toxin-1 and its effects on permeability and tissue integrity in vitro with the use of excised porcine vaginal mucosa. STUDY DESIGN Permeability to tritiated water (1 and 10 microg/mL applied toxin) and transmucosal flux of (35)S-methionine-labeled toxic shock syndrome toxin-1 (10 and 20 microg/mL) for up to 12 hours were assessed with the use of a continuous flow perfusion system. The location of labeled toxin that penetrated the mucosal tissue strata was determined. The integrity of toxin-treated, intact, scalpel-incised tissue was evaluated histopathologically. RESULTS Toxic shock syndrome toxin-1 caused a non-dose-dependent increase in mucosal permeability and traversed the intact mucosa at a low rate without disrupting tissue integrity. In incised vaginal mucosa, toxic shock syndrome toxin-1 induced subepithelial separation and atrophy that were analogous to clinically relevant vaginal lesions that were reported in fatal cases of menstrual toxic shock syndrome. CONCLUSION An in vitro model could be used to demonstrate that toxic shock syndrome toxin-1 permeates the vaginal mucosa and distributes throughout the tissue. Histologic evaluation of tissues that were exposed to toxic shock syndrome toxin-1 demonstrated lesions that were similar to those lesions that were reported in cases of menstrual toxic shock syndrome.

Collaboration


Dive into the Catherine C. Davis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick M. Schlievert

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge