Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine C. Hauck is active.

Publication


Featured researches published by Catherine C. Hauck.


Journal of Chromatography B | 2002

Solvent extraction selection in the determination of isoflavones in soy foods

Patricia A. Murphy; Kobita Barua; Catherine C. Hauck

Acetonitrile is superior to acetone, ethanol and methanol in extracting the 12 phytoestrogenic soy isoflavone forms found in foods. At 53% organic solvent in water, raw soy flour, tofu, tempeh, textured vegetable protein and soy germ were evaluated for isoflavone extraction efficiency. The efficiency of acetonitrile extraction was demonstrated in mass balance evaluations of toasting of soy flour and soymilk heating.


Journal of Agricultural and Food Chemistry | 2008

Enzyme-assisted aqueous extraction of oleosomes from soybeans (Glycine max).

Virginie N. Kapchie; Daijing Wei; Catherine C. Hauck; Patricia A. Murphy

Oleosomes, with their unique structural proteins, the oleosins, are known to be useful in cosmetics and other emulsion applications. A procedure to fractionate intact oleosomes to produce soybean oil without the use of organic solvents was investigated. Process parameters, enzyme treatment, filtration, cell lysis, and centrifugation, were studied. Successive extractions of the residue, eliminating the filtration step, pressurization, or ultrasonication of soybean flour prior to enzyme treatment and enzyme treatment on the residue, were the key steps. A mixture of Multifect Pectinase FE, Cellulase A, and Multifect CX 13L in equal proportion gave 36.42-63.23% of the total soybean oil from oleosomes, respectively, for 45 and 180 s of blending time, compared to the conventional method with lower yields (34.24 and 28.65%, respectively, for 45 and 180 s of blending time). Three successive extractions of the residue increased the oil yield to a maximum of 84.65% of the total soybean oil recovered in intact oleosomes. The percentage of lipid in the supernatant fraction decreased to a minimum value of 0.33% with the use of the enzymes at a 3% dosage. The results are considered to be useful for developing large-scale and efficient extraction of oleosomes from soybean.


Journal of Ethnopharmacology | 2011

Permeability of rosmarinic acid in Prunella vulgaris and ursolic acid in Salvia officinalis extracts across Caco-2 cell monolayers

Zhiyi Qiang; Zhong Ye; Catherine C. Hauck; Patricia A. Murphy; Joe-Ann McCoy; Mark P. Widrlechner; Manju B. Reddy; Suzanne Hendrich

ETHNOPHARMACOLOGICAL RELEVANCE Rosmarinic acid (RA), a caffeic acid-related compound found in high concentrations in Prunella vulgaris (self-heal), and ursolic acid (UA), a pentacyclic triterpene acid concentrated in Salvia officinalis (sage), have been traditionally used to treat inflammation in the mouth, and may also be beneficial for gastrointestinal health in general. AIM OF THE STUDY To investigate the permeabilities of RA and UA as pure compounds and in Prunella vulgaris and Salvia officinalis ethanol extracts across human intestinal epithelial Caco-2 cell monolayers. MATERIALS AND METHODS The permeabilities and phase II biotransformation of RA and UA as pure compounds and in herbal extracts were compared using Caco-2 cells with HPLC detection. RESULTS The apparent permeability coefficient (P(app)) for RA and RA in Prunella vulgaris extracts was 0.2 ± 0.05 × 10(-6)cm/s, significantly increased to 0.9 ± 0.2 × 10(-6)cm/s after β-glucuronidase/sulfatase treatment. P(app) for UA and UA in Salvia officinalis extract was 2.7 ± 0.3 × 10(-6)cm/s and 2.3 ± 0.5 × 10(-6)cm/s before and after β-glucuronidase/sulfatase treatment, respectively. Neither compound was affected in permeability by the herbal extract matrix. CONCLUSION RA and UA in herbal extracts had similar uptake as that found using the pure compounds, which may simplify the prediction of compound efficacy, but the apparent lack of intestinal glucuronidation/sulfation of UA is likely to further enhance the bioavailability of that compound compared with RA.


Phytochemistry | 2012

The inhibition of lipopolysaccharide-induced macrophage inflammation by 4 compounds in Hypericum perforatum extract is partially dependent on the activation of SOCS3.

Nan Huang; Ludmila Rizshsky; Catherine C. Hauck; Basil J. Nikolau; Patricia A. Murphy; Diane F. Birt

Our previous studies found that 4 compounds, namely pseudohypericin, amentoflavone, quercetin, and chlorogenic acid, in Hypericum perforatum ethanol extract synergistically inhibited lipopolysaccharide (LPS)-induced macrophage production of prostaglandin E2 (PGE2). Microarray studies led us to hypothesize that these compounds inhibited PGE2 production by activating suppressor of cytokine signaling 3 (SOCS3). In the current study, siRNA was used to knockdown expression of SOCS3 in RAW 264.7 macrophages and investigated the impact of H. perforatum extract and the 4 compounds on inflammatory mediators and cytokines. It was found that the SOCS3 knockdown significantly compromised the inhibition of PGE2 and nitric oxide (NO) by the 4 compounds, but not by the extract. The 4 compounds, but not the extract, decreased interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), while both lowered interleukine-1β. SOCS3 knockdown further decreased IL-6 and TNF-α. Pseudohypericin was the major contributor to the PGE2 and NO inhibition in cells treated with the 4 compounds, and its activity was lost with the SOCS3 knockdown. Cyclooxygenase-2 (COX-2) and inducible NO synthase protein expression were not altered by the treatments, while COX-2 activity was decreased by the extract and the 4 compounds and increased by SOCS3 knockdown. In summary, it was demonstrated that the 4 compounds inhibited LPS-induced PGE2 and NO through SOCS3 activation. The reduction of PGE2 can be partially attributed to COX-2 enzyme activity, which was significantly elevated with SOCS3 knockdown. At the same time, these results also suggest that constituents in H. perforatum extract were alleviating LPS-induced macrophage response through SOCS3 independent mechanisms.


Virology Journal | 2011

Inhibition of HIV-1 infection by aqueous extracts of Prunella vulgaris L.

ChoonSeok Oh; Jason P. Price; Melinda A. Brindley; Mark P. Widrlechner; Luping Qu; Joe-Ann McCoy; Patricia A. Murphy; Catherine C. Hauck; Wendy Maury

BackgroundThe mint family (Lamiaceae) produces a wide variety of constituents with medicinal properties. Several family members have been reported to have antiviral activity, including lemon balm (Melissa officinalis L.), sage (Salvia spp.), peppermint (Mentha × piperita L.), hyssop (Hyssopus officinalis L.), basil (Ocimum spp.) and self-heal (Prunell a vulgaris L.). To further characterize the anti-lentiviral activities of Prunella vulgaris, water and ethanol extracts were tested for their ability to inhibit HIV-1 infection.ResultsAqueous extracts contained more anti-viral activity than did ethanol extracts, displaying potent antiviral activity against HIV-1 at sub μg/mL concentrations with little to no cellular cytotoxicity at concentrations more than 100-fold higher. Time-of-addition studies demonstrated that aqueous extracts were effective when added during the first five hours following initiation of infection, suggesting that the botanical constituents were targeting entry events. Further analysis revealed that extracts inhibited both virus/cell interactions and post-binding events. While only 40% inhibition was maximally achieved in our virus/cell interaction studies, extract effectively blocked post-binding events at concentrations similar to those that blocked infection, suggesting that it was targeting of these latter steps that was most important for mediating inhibition of virus infectivity.ConclusionsWe demonstrate that aqueous P. vulgaris extracts inhibited HIV-1 infectivity. Our studies suggest that inhibition occurs primarily by interference of early, post-virion binding events. The ability of aqueous extracts to inhibit early events within the HIV life cycle suggests that these extracts, or purified constituents responsible for the antiviral activity, are promising microbicides and/or antivirals against HIV-1.


Virology Journal | 2009

Inhibition of lentivirus replication by aqueous extracts of Prunella vulgaris

Melinda A. Brindley; Mark P. Widrlechner; Joe-Ann McCoy; Patricia A. Murphy; Catherine C. Hauck; Ludmila Rizshsky; Basil J. Nikolau; Wendy Maury

BackgroundVarious members of the mint family have been used historically in Chinese and Native American medicine. Many of these same family members, including Prunella vulgaris, have been reported to have anti-viral activities. To further characterize the anti-lentiviral activities of P. vulgaris, water and ethanol extractions were tested for their ability to inhibit equine infectious anemia virus (EIAV) replication.ResultsAqueous extracts contained more anti-viral activity than did ethanol extracts, displaying potent anti-lentiviral activity against virus in cell lines as well as in primary cell cultures with little to no cellular cytotoxicity. Time-of-addition studies demonstrated that the extracts were effective when added during the first four h of the viral life cycle, suggesting that the botanical constituents were targeting the virion itself or early entry events. Further analysis revealed that the extracts did not destroy EIAV virion integrity, but prevented viral particles from binding to the surface of permissive cells. Modest levels of anti-EIAV activity were also detected when the cells were treated with the extracts prior to infection, indicating that anti-EIAV botanical constituents could interact with both viral particles and permissive cells to interfere with infectivity. Size fractionation of the extract demonstrated that eight of the nine fractions generated from aqueous extracts displayed anti-viral activity. Separation of ethanol soluble and insoluble compounds in the eight active fractions revealed that ethanol-soluble constituents were responsible for the anti-viral activity in one fraction whereas ethanol-insoluble constituents were important for the anti-viral activity in two of the other fractions. In three of the five fractions that lost activity upon sub-fractionation, anti-viral activity was restored upon reconstitution of the fractions, indicating that synergistic anti-viral activity is present in several of the fractions.ConclusionOur findings indicate that multiple Prunella constituents have profound anti-viral activity against EIAV, providing additional evidence of the broad anti-viral abilities of these extracts. The ability of the aqueous extracts to prevent entry of viral particles into permissive cells suggests that these extracts may function as promising microbicides against lentiviruses.


Virology Journal | 2009

Identification of light-independent inhibition of human immunodeficiency virus-1 infection through bioguided fractionation of Hypericum perforatum

Wendy Maury; Jason P. Price; Melinda A. Brindley; ChoonSeok Oh; Jeffrey D. Neighbors; David F. Wiemer; Nickolas Wills; Susan Carpenter; Catherine C. Hauck; Patricia A. Murphy; Mark P. Widrlechner; Kathleen Delate; Ganesh Kumar; George A. Kraus; Ludmila Rizshsky; Basil J. Nikolau

BackgroundLight-dependent activities against enveloped viruses in St. Johns Wort (Hypericum perforatum) extracts have been extensively studied. In contrast, light-independent antiviral activity from this species has not been investigated.ResultsHere, we identify the light-independent inhibition of human immunodeficiency virus-1 (HIV-1) by highly purified fractions of chloroform extracts of H. perforatum. Both cytotoxicity and antiviral activity were evident in initial chloroform extracts, but bioassay-guided fractionation produced fractions that inhibited HIV-1 with little to no cytotoxicity. Separation of these two biological activities has not been reported for constituents responsible for the light-dependent antiviral activities. Antiviral activity was associated with more polar subfractions. GC/MS analysis of the two most active subfractions identified 3-hydroxy lauric acid as predominant in one fraction and 3-hydroxy myristic acid as predominant in the other. Synthetic 3-hydroxy lauric acid inhibited HIV infectivity without cytotoxicity, suggesting that this modified fatty acid is likely responsible for observed antiviral activity present in that fraction. As production of 3-hydroxy fatty acids by plants remains controversial, H. perforatum seedlings were grown sterilely and evaluated for presence of 3-hydroxy fatty acids by GC/MS. Small quantities of some 3-hydroxy fatty acids were detected in sterile plants, whereas different 3-hydroxy fatty acids were detected in our chloroform extracts or field-grown material.ConclusionThrough bioguided fractionation, we have identified that 3-hydroxy lauric acid found in field grown Hypericum perforatum has anti-HIV activity. This novel anti-HIV activity can be potentially developed into inexpensive therapies, expanding the current arsenal of anti-retroviral agents.


Journal of Food Science | 2011

Process Improvement for Semipurified Oleosomes on a Pilot‐Plant Scale

Virginie N. Kapchie; Catherine C. Hauck; Hui Wang; Patricia A. Murphy

Semipurified oleosomes were isolated on a pilot-plant scale using improved-process extraction conditions. The improved process consisted of continuous centrifugation in a three-phase decanter with recirculation of slurry until most of the oleosomes were recovered. Oleosome fractionation, oleosin identification, and isoflavone and saponin mass distributions and recoveries were investigated. The improved pilot-plant oleosome extraction process was achieved in 8 h. A total of 91%± 1% of soybean oil was recovered as intact oleosomes. The oil content of the aqueous supernatant and the residue fractions were low at 2% and 3%, respectively. The aqueous supernatant fraction contained 40% total soybean protein. About 76% of the proteins present in the oleosome fraction were soybean storage proteins. Washing the semipurified oleosomes with a 0.1 M Tris-HCl, pH 8.6 containing 0.4 M sucrose, and 0.5 M NaCl resulted in the recovery of the associated storage proteins. The recovery of these proteins in addition to the protein in aqueous supernatant accounted for 79% of the total soybean storage proteins fractionated by this process. Oleosins were detected at 17 and 18 kDa. Isoflavones and saponins partitioned into the oleosome, aqueous supernatant, and residue fractions at different ratios with the majority, about 82 and 63 mole%, respectively, in oleosome and aqueous supernatant fractions, making these fractions an attractive source for phytochemicals.


Food Chemistry | 2013

Oxidative stability of soybean oil in oleosomes as affected by pH and iron.

Virginie N. Kapchie; Linxing Yao; Catherine C. Hauck; Tong Wang; Patricia A. Murphy

The oxidative stability of oil in soybean oleosomes, isolated using the Enzyme-Assisted Aqueous Extraction Process (EAEP), was evaluated. The effects of ferric chloride, at two concentration levels (100 and 500 μM), on lipid oxidation, was examined under pH 2 and 7. The peroxide value (PV) and thiobarbituric acid-reactive substance (TBARS) value of oil, in oleosome suspensions stored at 60 °C, were measured over a 12 day period. The presence of ferric chloride significantly (P<0.05) affected the oxidative stability of oil in the isolated oleosome, as measured by the PV and TBARS. Greater lipid oxidation occurred under an acidic pH. In the pH 7 samples, the positively charged transition metals were strongly attracted to the negatively charged droplets. However, the low ζ-potential and the high creaming rate at this pH, may have limited the oxidation. Freezing, freeze-drying or heating of oleosomes have an insignificant impact on the oxidative stability of oil in isolated soybean oleosomes. Manufacturers should be cautious when adding oleosomes as ingredients in food systems containing transition metal ions.


Phytochemistry | 2012

Bauer ketones 23 and 24 from Echinacea paradoxa var. paradoxa inhibit lipopolysaccharide-induced nitric oxide, prostaglandin E2 and cytokines in RAW264.7 mouse macrophages

Xiaozhu Zhang; Ludmila Rizshsky; Catherine C. Hauck; Luping Qu; Mark P. Widrlechner; Basil J. Nikolau; Patricia A. Murphy; Diane F. Birt

Among the nine Echinacea species, E. purpurea, E. angustifolia and E. pallida, have been widely used to treat the common cold, flu and other infections. In this study, ethanol extracts of these three Echinacea species and E. paradoxa, including its typical variety, E. paradoxa var. paradoxa, were screened in lipopolysaccharide (LPS)-stimulated macrophage cells to assess potential anti-inflammatory activity. E. paradoxa var. paradoxa, rich in polyenes/polyacetylenes, was an especially efficient inhibitor of LPS-induced production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) by 46%, 32%, 53% and 26%, respectively, when tested at 20 μg/ml in comparison to DMSO control. By bioactivity-guided fractionation, pentadeca-8Z-ene-11, 13-diyn-2-one (Bauer ketone 23) and pentadeca-8Z, 13Z-dien-11-yn-2-one (Bauer ketone 24) from E. paradoxa var. paradoxa were found primarily responsible for inhibitory effects on NO and PGE2 production. Moreover, Bauer ketone 24 was the major contributor to inhibition of inflammatory cytokine production in LPS-induced mouse macrophage cells. These results provide a rationale for exploring the medicinal effects of the Bauer ketone-rich taxon, E. paradoxa var. paradoxa, and confirm the anti-inflammatory properties of Bauer ketones 23 and 24.

Collaboration


Dive into the Catherine C. Hauck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge