Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine C. Y. Chang is active.

Publication


Featured researches published by Catherine C. Y. Chang.


American Journal of Physiology-endocrinology and Metabolism | 2009

Acyl-coenzyme A:cholesterol acyltransferases

Ta-Yuan Chang; Bo-Liang Li; Catherine C. Y. Chang; Yasuomi Urano

The enzymes acyl-coenzyme A (CoA):cholesterol acyltransferases (ACATs) are membrane-bound proteins that utilize long-chain fatty acyl-CoA and cholesterol as substrates to form cholesteryl esters. In mammals, two isoenzymes, ACAT1 and ACAT2, encoded by two different genes, exist. ACATs play important roles in cellular cholesterol homeostasis in various tissues. This chapter summarizes the current knowledge on ACAT-related research in two areas: 1) ACAT genes and proteins and 2) ACAT enzymes as drug targets for atherosclerosis and for Alzheimers disease.


Current Opinion in Lipidology | 2001

Roles of acyl-coenzyme A : cholesterol acyltransferase-1 and-2

Ta-Yuan Chang; Catherine C. Y. Chang; Song Lin; Chunjiang Yu; Bo-Liang Li; Akira Miyazaki

Acyl-coenzyme A : cholesterol acyltransferase (ACAT) is an intracellular enzyme that produces cholesteryl esters in various tissues. In mammals, two ACAT genes (ACAT1 and ACAT2) have been identified. Together, these two enzymes are involved in storing cholesteryl esters as lipid droplets, in macrophage foam-cell formation, in absorbing dietary cholesterol, and in supplying cholesteryl esters as part of the core lipid for lipoprotein synthesis and assembly. The key difference in tissue distribution of ACAT1 and ACAT2 between humans, mice and monkeys is that, in adult human liver (including hepatocytes and bile duct cells), the major enzyme is ACAT1, rather than ACAT2. There is compelling evidence implicating a role for ACAT1 in macrophage foam-cell formation, and for ACAT2 in intestinal cholesterol absorption. However, further studies at the biochemical and cell biological levels are needed in order to clarify the functional roles of ACAT1 and ACAT2 in the VLDL or chylomicron synthesis/assembly process.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1998

Expression of ACAT-1 Protein in Human Atherosclerotic Lesions and Cultured Human Monocytes-Macrophages

Akira Miyazaki; Naomi Sakashita; Oneil Lee; Kiyoshi Takahashi; Seikoh Horiuchi; Hideki Hakamata; Peter M. Morganelli; Catherine C. Y. Chang; Ta-Yuan Chang

The acyl coenzyme A:cholesterol acyltransferase (ACAT) gene was first cloned in 1993 (Chang et al, J Biol Chem. 1993;268:20747-20755; designated ACAT-1). Using affinity-purified antibodies raised against the N-terminal portion of human ACAT-1 protein, we performed immunohistochemical localization studies and showed that the ACAT-1 protein was highly expressed in atherosclerotic lesions of the human aorta. We also performed cell-specific localization studies using double immunostaining and showed that ACAT-1 was predominantly expressed in macrophages but not in smooth muscle cells. We then used a cell culture system in vitro to monitor the ACAT-1 expression in differentiating monocytes-macrophages. The ACAT-1 protein content increased by up to 10-fold when monocytes spontaneously differentiated into macrophages. This increase occurred within the first 2 days of culturing the monocytes and reached a plateau level within 4 days of culturing, indicating that the increase in ACAT-1 protein content is an early event during the monocyte differentiation process. The ACAT-1 protein expressed in the differentiating monocytes-macrophages was shown to be active by enzyme assay in vitro. The high levels of ACAT-1 present in macrophages maintained in culture can explain the high ACAT-1 contents found in atherosclerotic lesions. Our results thus support the idea that ACAT-1 plays an important role in differentiating monocytes and in forming macrophage foam cells during the development of human atherosclerosis.


Journal of Biological Chemistry | 1995

Tissue-specific Expression and Cholesterol Regulation of Acylcoenzyme A:Cholesterol Acyltransferase (ACAT) in Mice MOLECULAR CLONING OF MOUSE ACAT cDNA, CHROMOSOMAL LOCALIZATION, AND REGULATION OF ACAT IN VIVO AND IN VITRO

Patricia J. Uelmen; Kazuhiro Oka; Merry Sullivan; Catherine C. Y. Chang; Ta-Yuan Chang; Lawrence Chan

Acyl-coenzyme A:cholesterol acyltransferase (ACAT) catalyzes the esterification of cholesterol with long chain fatty acids and is believed to play an important part in the development of atherosclerotic lesions. To facilitate the study of ACATs role in this process, we have used the human ACAT K1 clone previously described (Chang, C. C. Y., Huh, H. Y., Cadigan, K. M., and Chang, T. Y.(1993) J. Biol. Chem. 268, 20747-20755) to isolate mouse ACAT cDNA from a liver cDNA library. The 3.7-kilobase cDNA clone isolated contains a 1620-base pair open reading frame which encodes a protein of 540 amino acids. The predicted mouse ACAT protein is 87% identical to the protein product of human ACAT K1 and shares many of the same secondary structural features, including two transmembrane domains, a leucine heptad motif consistent with dimer or multimer formation, and five regions homologous to the “signature sequences” found in other enzymes that catalyze acyl adenylation followed by acyl thioester formation and acyl transfer. Using the cDNA as a hybridization probe, we mapped the gene encoding mouse ACAT to chromosome 1 in a region syntenic to human chromosome 1 where the ACAT gene is located. Northern blot analysis and RNase protection assays of mouse tissues revealed that ACAT mRNA is expressed most highly in the adrenal gland, ovary, and preputial gland and is least abundant in skeletal muscle, adipose tissue, heart, and brain. To study the dietary regulation of ACAT mRNA expression in mouse tissues, we fed C57BL/6J mice a high-fat, high-cholesterol (HF/HC) atherogenic diet for 3 weeks and measured ACAT mRNA levels in various tissues by RNase protection. The HF/HC diet had little effect on ACAT mRNA levels in the small intestine, aorta, adrenal, or peritoneal macrophages, whereas hepatic ACAT mRNA levels were doubled in mice fed the atherogenic diet. ACAT activity in liver microsomes was similarly increased in cholesterol-fed mice, suggesting that mouse ACAT is regulated at least in part at the level of mRNA abundance. Additionally, a significant positive correlation was observed between ACAT activity and microsomal free cholesterol levels in chow- and cholesterol-fed mice, supporting the concept of cholesterol availability as a regulator of ACAT. To further investigate the regulation of ACAT activity under controlled conditions, ACAT-deficient Chinese hamster ovary cells were stably transfected with the mouse ACAT cDNA clone driven by a cytomegalovirus promoter. Two transfected Chinese hamster ovary cell lines that expressed the mouse ACAT transgene regained the ability to esterify cholesterol. Cholesterol esterification activity in both of these cell lines was further increased by exposure of these cells to low density lipoprotein. Thus we have demonstrated that mouse ACAT expression in vivo and in vitro is regulated by at least two mechanisms: control of mRNA abundance and post-transcriptional regulation of the enzyme activity, probably by cholesterol availability.


Proceedings of the National Academy of Sciences of the United States of America | 2010

ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD

Elena Y. Bryleva; Maximillian A. Rogers; Catherine C. Y. Chang; Floyd Buen; Brent T. Harris; Estelle Rousselet; Nabil G. Seidah; Salvatore Oddo; Frank M. LaFerla; Thomas A. Spencer; William F. Hickey; Ta-Yuan Chang

Cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative diseases, including the abnormal accumulation of amyloid-β, one of the pathological hallmarks of Alzheimer disease (AD). Acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) are two enzymes that convert free cholesterol to cholesteryl esters. ACAT inhibitors have recently emerged as promising drug candidates for AD therapy. However, how ACAT inhibitors act in the brain has so far remained unclear. Here we show that ACAT1 is the major functional isoenzyme in the mouse brain. ACAT1 gene ablation (A1−) in triple transgenic (i.e., 3XTg-AD) mice leads to more than 60% reduction in full-length human APPswe as well as its proteolytic fragments, and ameliorates cognitive deficits. At 4 months of age, A1− causes a 32% content increase in 24-hydroxycholesterol (24SOH), the major oxysterol in the brain. It also causes a 65% protein content decrease in HMG-CoA reductase (HMGR) and a 28% decrease in sterol synthesis rate in AD mouse brains. In hippocampal neurons, A1− causes an increase in the 24SOH synthesis rate; treating hippocampal neuronal cells with 24SOH causes rapid declines in hAPP and in HMGR protein levels. A model is provided to explain our findings: in neurons, A1− causes increases in cholesterol and 24SOH contents in the endoplasmic reticulum, which cause reductions in hAPP and HMGR protein contents and lead to amelioration of amyloid pathology. Our study supports the potential of ACAT1 as a therapeutic target for treating certain forms of AD.


American Journal of Pathology | 2000

Localization of Human Acyl-Coenzyme A:Cholesterol Acyltransferase-1 (ACAT-1) in Macrophages and in Various Tissues

Naomi Sakashita; Akira Miyazaki; Motohiro Takeya; Seikoh Horiuchi; Catherine C. Y. Chang; Ta-Yuan Chang; Kiyoshi Takahashi

To investigate the distribution of acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT-1) in various human tissues, we examined tissues of autopsy cases immunohistochemically. ACAT-1 was demonstrated in macrophages, antigen-presenting cells, steroid hormone-producing cells, neurons, cardiomyocytes, smooth muscle cells, mesothelial cells, epithelial cells of the urinary tracts, thyroid follicles, renal tubules, pituitary, prostatic, and bronchial glands, alveolar and intestinal epithelial cells, pancreatic acinar cells, and hepatocytes. These findings showed that ACAT-1 is present in a variety of human tissues examined. The immunoreactivities are particularly prominent in the macrophages, steroid hormone-producing cells, followed by hepatocytes, and intestinal epithelia. In cultured human macrophages, immunoelectron microscopy revealed that ACAT-1 was located mainly in the tubular rough endoplasmic reticulum; immunoblot analysis showed that the ACAT-1 protein content did not change with or without cholesterol loading; however, on cholesterol loading, about 30 to 40% of the total immunoreactivity appeared in small-sized vesicles. These vesicles were also enriched in 78-kd glucose-regulated protein (GRP 78), a specific marker for the endoplasmic reticulum. Immunofluorescent microscopy demonstrated extensive colocalization of ACAT-1 and GRP 78 signals in both the tubular and vesicular endoplasmic reticulum before and after cholesterol loading. These results raise the possibility that foam cell formation may activate an endoplasmic reticulum vesiculation process, producing vesicles enriched in the ACAT-1 protein.


Biochemical Journal | 2005

Investigating the allosterism of acyl-CoA:cholesterol acyltransferase (ACAT) by using various sterols: in vitro and intact cell studies

Jay Liu; Catherine C. Y. Chang; Emily J. Westover; Douglas F. Covey; Ta-Yuan Chang

ACAT1 (acyl-CoA:cholesterol acyltransferase 1) is thought to have two distinct sterol-binding sites: a substrate-binding site and an allosteric-activator site. In the present work, we investigated the structural features of various sterols as substrates and/or activators in vitro. The results show that without cholesterol, the plant sterol sitosterol is a poor substrate for ACAT. In the presence of cholesterol, ACAT1-mediated esterification of sitosterol is highly activated while ACAT2-mediated esterification of sitosterol is only moderately activated. For ACAT1, we show that the stereochemistry of the 3-hydroxy group at steroid ring A is a critical structural feature for a sterol to serve as a substrate, but less critical for activation. Additionally, enantiomeric cholesterol, which has the same biophysical properties as cholesterol in membranes, fails to activate ACAT1. Thus ACAT1 activation by cholesterol is the result of stereo-specific interactions between cholesterol and ACAT1, and is not related to the biophysical properties of phospholipid membranes. To demonstrate the relevance of the ACAT1 allosteric model in intact cells, we showed that sitosterol esterification in human macrophages is activated upon cholesterol loading. We further show that the activation is not due to an increase in ACAT1 protein content, but is partly due to an increase in the cholesterol content in the endoplasmic reticulum where ACAT1 resides. Together, our results support the existence of a distinct sterol-activator site in addition to the sterol-substrate site of ACAT1 and demonstrate the applicability of the ACAT1 allosteric model in intact cells.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Transport of LDL-derived cholesterol from the NPC1 compartment to the ER involves the trans-Golgi network and the SNARE protein complex

Yasuomi Urano; Hiroshi Watanabe; Stephanie R. Murphy; Yohei Shibuya; Yong Geng; Andrew A. Peden; Catherine C. Y. Chang; Ta-Yuan Chang

Mammalian cells acquire cholesterol mainly from LDL. LDL enter the endosomes, allowing cholesteryl esters to be hydrolyzed by acid lipase. The hydrolyzed cholesterol (LDL-CHOL) enters the Niemann–Pick type C1 (NPC1)-containing endosomal compartment en route to various destinations. Whether the Golgi is involved in LDL-CHOL transport downstream of the NPC1 compartment has not been demonstrated. Using subcellular fractionation and immunoadsorption to enrich for specific membrane fractions, here we show that, when parental Chinese hamster ovary (CHO) cells are briefly exposed to 3H-cholesteryl linoleate (CL) labeled-LDL, newly liberated 3H-LDL-CHOL appears in membranes rich in trans-Golgi network (TGN) long before it becomes available for re-esterification at the endoplasmic reticulum (ER) or for efflux at the plasma membrane. In mutant cells lacking NPC1, the appearance of newly liberated 3H-LDL-CHOL in the TGN-rich fractions is much reduced. We next report a reconstituted transport system that recapitulates the transport of LDL-CHOL to the TGN and to the ER. The transport system requires ATP and cytosolic factors and depends on functionality of NPC1. We demonstrate that knockdown by RNAi of 3 TGN-specific SNAREs (VAMP4, syntaxin 6, and syntaxin 16) reduces ≥50% of the LDL-CHOL transport in intact cells and in vitro. These results show that vesicular trafficking is involved in transporting a significant portion of LDL-CHOL from the NPC1-containing endosomal compartment to the TGN before its arrival at the ER.


Journal of Biological Chemistry | 1999

Human Acyl-CoA:Cholesterol Acyltransferase-1 Is a Homotetrameric Enzyme in Intact Cells and in Vitro

Chunjiang Yu; Jun Chen; Song Lin; Jay Liu; Catherine C. Y. Chang; Ta-Yuan Chang

Acyl-CoA:cholesterol acyltransferase (ACAT) is a key enzyme in cellular cholesterol homeostasis and in atherosclerosis. ACAT-1 may function as an allosteric enzyme. We took a multifaceted approach to investigate the subunit composition of ACAT-1. When ACAT-1 with two different tags were co-expressed in the same Chinese hamster ovary cells, antibody specific to one tag caused co-immunoprecipitation of both types of ACAT-1 proteins. Radioimmunoprecipitations of cells expressing the untagged ACAT-1 or the 6-histidine-tagged ACAT-1 yielded a single radiolabeled band of predicted size on SDS-polyacrylamide gel electrophoresis. These results show that ACAT-1 exists as homo-oligomers in intact Chinese hamster ovary cells. We solubilized HisACAT-1 with the detergent deoxycholate or CHAPS (3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonic acid), performed gel filtration chromatography and sucrose density gradient centrifugations in H2O and D2O, and determined the Stokes radii and sedimentation coefficients of the HisACAT1-detergent complexes. The estimated molecular mass of HisACAT-1 is 263 kDa, which is 4 times that of the HisACAT-1 monomer (69 kDa). Finally, cross-linking experiments in intact cells and in vitro show that the increase in cross-linker concentrations causes an increase in size of the HisACAT-1-positive signals, forming material(s) 4 times the size of the monomer, supporting the conclusion that ACAT-1 is a homotetrameric enzyme.


Journal of Biological Chemistry | 2005

The Active Site His-460 of Human Acyl-coenzyme A:Cholesterol Acyltransferase 1 Resides in a Hitherto Undisclosed Transmembrane Domain

Zhan-Yun Guo; Song Lin; Jennifer A. Heinen; Catherine C. Y. Chang; Ta-Yuan Chang

Human acyl-coenzyme A:cholesterol acyltransferase 1 (hACAT1) esterifies cholesterol at the endoplasmic reticulum (ER). We had previously reported that hACAT1 contains seven transmembrane domains (TMD) (Lin, S., Cheng, D., Liu, M. S., Chen, J., and Chang, T. Y. (1999) J. Biol. Chem. 274, 23276-23285) and nine cysteines. The Cys near the N-terminal is located at the cytoplasm; the two cysteines near the C-terminal form a disulfide bond and are located in the ER lumen. The other six free cysteines are located in buried region(s) of the enzyme (Guo, Z.-Y., Chang, C. C. Y., Lu, X., Chen, J., Li, B.-L., and Chang, T.-Y. (2005) Biochemistry 44, 6537-6548). In the current study, we show that the conserved His-460 is a key active site residue for hACAT1. We next performed Cys-scanning mutagenesis within the region of amino acids 354-493, expressed these mutants in Chinese hamster ovary cells lacking ACAT1, and prepared microsomes from transfected cells. The microsomes are either left intact or permeabilized with detergent. The accessibility of the engineered cysteines of microsomal hACAT1 to various maleimide derivatives, including mPEG5000-maleimide (large, hydrophilic, and membrane-impermeant), N-ethylmaleimide, 4-acetamido-4′-maleimidylstilbene-2,2′-disulfonic acid (small, hydrophilic, and ER membrane-permeant), and N-phenylmaleimide (small, hydrophobic, and ER membrane-permeant), were monitored by Western blot analysis. The results led us to construct a revised, nine-TMD model, with the active site His-460 located within a hitherto undisclosed transmembrane domain, between Arg-443 and Tyr-462.

Collaboration


Dive into the Catherine C. Y. Chang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo-Liang Li

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jia Chen

ShanghaiTech University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Xiong

Laboratory of Molecular Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge