Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine Creppe is active.

Publication


Featured researches published by Catherine Creppe.


Cell | 2009

Elongator Controls the Migration and Differentiation of Cortical Neurons through Acetylation of α-Tubulin

Catherine Creppe; Lina Malinouskaya; Marie-Laure Volvert; Magali Gillard; Pierre Close; Olivier Malaise; Sophie Laguesse; Isabelle Cornez; Souad Rahmouni; Sandra Ormenese; Shibeshih Belachew; Brigitte Malgrange; Jean-Paul Chapelle; Ulrich Siebenlist; Gustave Moonen; Alain Chariot; Laurent Nguyen

The generation of cortical projection neurons relies on the coordination of radial migration with branching. Here, we report that the multisubunit histone acetyltransferase Elongator complex, which contributes to transcript elongation, also regulates the maturation of projection neurons. Indeed, silencing of its scaffold (Elp1) or catalytic subunit (Elp3) cell-autonomously delays the migration and impairs the branching of projection neurons. Strikingly, neurons defective in Elongator show reduced levels of acetylated alpha-tubulin. Reduction of alpha-tubulin acetylation via expression of a nonacetylatable alpha-tubulin mutant leads to comparable defects in cortical neurons and suggests that alpha-tubulin is a target of Elp3. This is further supported by the demonstration that Elp3 promotes acetylation and counteracts HDAC6-mediated deacetylation of this substrate in vitro. Our results uncover alpha-tubulin as a target of the Elongator complex and suggest that a tight regulation of its acetylation underlies the maturation of cortical projection neurons.


Science | 2016

Transcriptome-wide distribution and function of RNA hydroxymethylcytosine

Benjamin Delatte; Fei Wang; Long Vo Ngoc; Evelyne Collignon; Elise Bonvin; Rachel Deplus; Emilie Calonne; Bouchra Hassabi; Pascale Putmans; Stephan Awe; Collin Wetzel; Judith Kreher; Romuald Soin; Catherine Creppe; Patrick A. Limbach; Cyril Gueydan; Véronique Kruys; Alexander Brehm; Svetlana Minakhina; Matthieu Defrance; Ruth Steward; François Fuks

Chemical modification of RNA for function Chemical modifications play an important role in modifying and regulating the function of DNA and RNA. Delatte et al. show that, in the fruit fly, many messenger RNAs (mRNAs) contain the modified base 5-hydroxymethylcytosine (5hmC). The chemical mark is added by the same enzyme that adds 5hmC to DNA. Because many mRNAs involved in neuronal development contain 5hmC, blocking the enzyme causes brain defects and is lethal. In vivo, RNA hydroxymethylation promotes mRNA translation. Science, this issue p. 282 Posttranscriptional modification of messenger RNAs (mRNAs) is prevalent in Drosophila and promotes mRNA translation. Hydroxymethylcytosine, well described in DNA, occurs also in RNA. Here, we show that hydroxymethylcytosine preferentially marks polyadenylated RNAs and is deposited by Tet in Drosophila. We map the transcriptome-wide hydroxymethylation landscape, revealing hydroxymethylcytosine in the transcripts of many genes, notably in coding sequences, and identify consensus sites for hydroxymethylation. We found that RNA hydroxymethylation can favor mRNA translation. Tet and hydroxymethylated RNA are found to be most abundant in the Drosophila brain, and Tet-deficient fruitflies suffer impaired brain development, accompanied by decreased RNA hydroxymethylation. This study highlights the distribution, localization, and function of cytosine hydroxymethylation and identifies central roles for this modification in Drosophila.


Cellular and Molecular Life Sciences | 2010

The emerging role of lysine acetylation of non-nuclear proteins

Pierre Close; Catherine Creppe; Magali Gillard; Aurélie Ladang; Jean-Paul Chapelle; Laurent Nguyen; Alain Chariot

Lysine acetylation is a post-translational modification that critically regulates gene transcription by targeting histones as well as a variety of transcription factors in the nucleus. More recent reports have also demonstrated that numerous proteins located outside the nucleus are also acetylated and that this modification has profound consequences on their functions. This review describes the latest findings on the substrates acetylated outside the nucleus and on the acetylases and deacetylates that catalyse these modifications. Protein acetylation is emerging as a major mechanism by which key proteins are regulated in many physiological processes such as migration, metabolism and aging as well as in pathological circumstances such as cancer and neurodegenerative disorders.


Developmental Cell | 2015

A Dynamic Unfolded Protein Response Contributes to the Control of Cortical Neurogenesis

Sophie Laguesse; Catherine Creppe; Danny D. Nedialkova; Pierre Paul Prévot; Laurence Borgs; Sandra Huysseune; Bénédicte Franco; Guérin Duysens; Nathalie Krusy; Gabsang Lee; Nicolas Thelen; Marc Thiry; Pierre Close; Alain Chariot; Brigitte Malgrange; Sebastian A. Leidel; Juliette Godin; Laurent Nguyen

The cerebral cortex contains layers of neurons sequentially generated by distinct lineage-related progenitors. At the onset of corticogenesis, the first-born progenitors are apical progenitors (APs), whose asymmetric division gives birth directly to neurons. Later, they switch to indirect neurogenesis by generating intermediate progenitors (IPs), which give rise to projection neurons of all cortical layers. While a direct lineage relationship between APs and IPs has been established, the molecular mechanism that controls their transition remains elusive. Here we show that interfering with codon translation speed triggers ER stress and the unfolded protein response (UPR), further impairing the generation of IPs and leading to microcephaly. Moreover, we demonstrate that a progressive downregulation of UPR in cortical progenitors acts as a physiological signal to amplify IPs and promotes indirect neurogenesis. Thus, our findings reveal a contribution of UPR to cell fate acquisition during mammalian brain development.


Molecular and Cellular Biology | 2012

MacroH2A1 regulates the balance between self-renewal and differentiation commitment in embryonic and adult stem cells.

Catherine Creppe; Peggy Janich; Neus Cantariño; Marc Noguera; Vanesa Valero; Eva Musulen; Julien Douet; Melanija Posavec; Juan Martín-Caballero; Lauro Sumoy; Luciano Di Croce; Marcus Buschbeck

ABSTRACT One of the most striking epigenetic alterations that occurs at the level of the nucleosome is the complete exchange of the canonical H2A histones for the macroH2A variant. Here, we provide insight into the poorly recognized function of macroH2A in transcriptional activation and demonstrate its relevance in embryonic and adult stem cells. Knockdown of macroH2A1 in mouse embryonic stem (mES) cells limited their capacity to differentiate but not their self-renewal. The loss of macroH2A1 interfered with the proper activation of differentiation genes, most of which are direct target genes of macroH2A. Additionally, macroH2A1-deficient mES cells displayed incomplete inactivation of pluripotency genes and formed defective embryoid bodies. In vivo, macroH2A1-deficient teratomas contained a massive expansion of malignant, undifferentiated carcinoma tissue. In the heterogeneous culture of primary human keratinocytes, macroH2A1 levels negatively correlated with the self-renewal capacity of the pluripotent compartment. Together these results establish macroH2A1 as a critical chromatin component that regulates the delicate balance between self-renewal and differentiation of embryonic and adult stem cells.


PLOS Genetics | 2014

A Cbx8-containing polycomb complex facilitates the transition to gene activation during ES cell differentiation.

Catherine Creppe; Anna M. Palau; Roberto Malinverni; Vanesa Valero; Marcus Buschbeck

Polycomb proteins play an essential role in maintaining the repression of developmental genes in self-renewing embryonic stem cells. The exact mechanism allowing the derepression of polycomb target genes during cell differentiation remains unclear. Our project aimed to identify Cbx8 binding sites in differentiating mouse embryonic stem cells. Therefore, we used a genome-wide chromatin immunoprecipitation of endogenous Cbx8 coupled to direct massive parallel sequencing (ChIP-Seq). Our analysis identified 171 high confidence peaks. By crossing our data with previously published microarray analysis, we show that several differentiation genes transiently recruit Cbx8 during their early activation. Depletion of Cbx8 partially impairs the transcriptional activation of these genes. Both interaction analysis, as well as chromatin immunoprecipitation experiments support the idea that activating Cbx8 acts in the context of an intact PRC1 complex. Prolonged gene activation results in eviction of PRC1 despite persisting H3K27me3 and H2A ubiquitination. The composition of PRC1 is highly modular and changes when embryonic stem cells commit to differentiation. We further demonstrate that the exchange of Cbx7 for Cbx8 is required for the effective activation of differentiation genes. Taken together, our results establish a function for a Cbx8-containing complex in facilitating the transition from a Polycomb-repressed chromatin state to an active state. As this affects several key regulatory differentiation genes this mechanism is likely to contribute to the robust execution of differentiation programs.


Scientific Reports | 2015

Genome-wide hydroxymethylcytosine pattern changes in response to oxidative stress

Benjamin Delatte; Jana Jeschke; Matthieu Defrance; Martin Bachman; Catherine Creppe; Emilie Calonne; Martin Bizet; Rachel Deplus; Laura Marroquí; Myriam Libin; Mirunalini Ravichandran; Françoise Mascart; Decio L. Eizirik; Adele Murrell; Tomasz P. Jurkowski; François Fuks

The TET enzymes convert methylcytosine to the newly discovered base hydroxymethylcytosine. While recent reports suggest that TETs may play a role in response to oxidative stress, this role remains uncertain, and results lack in vivo models. Here we show a global decrease of hydroxymethylcytosine in cells treated with buthionine sulfoximine, and in mice depleted for the major antioxidant enzymes GPx1 and 2. Furthermore, genome-wide profiling revealed differentially hydroxymethylated regions in coding genes, and intriguingly in microRNA genes, both involved in response to oxidative stress. These results thus suggest a profound effect of in vivo oxidative stress on the global hydroxymethylome.


Trends in Neurosciences | 2016

Emerging Roles for the Unfolded Protein Response in the Developing Nervous System

Juliette Godin; Catherine Creppe; Sophie Laguesse; Laurent Nguyen

The unfolded protein response (UPR) is a homeostatic signaling pathway triggered by protein misfolding in the endoplasmic reticulum (ER). Beyond its protective role, it plays important functions during normal development in response to elevated demand for protein folding. Several UPR effectors show dynamic temporal and spatial expression patterns that correlate with milestones of the central nervous system (CNS) development. Here, we discuss recent studies suggesting that a dynamic regulation of UPR supports generation, maturation, and maintenance of differentiated neurons in the CNS. We further highlight studies supporting a developmental vulnerability of CNS to UPR dysregulation, which underlies neurodevelopmental disorders. We believe that a better understanding of UPR functions may provide novel opportunities for therapeutic strategies to fight ER/UPR-associated human neurological disorders.


BioMed Research International | 2011

Elongator: an ancestral complex driving transcription and migration through protein acetylation.

Catherine Creppe; Marcus Buschbeck

Elongator is an evolutionary highly conserved complex. At least two of its cellular functions rely on the intrinsic lysine acetyl-transferase activity of the Elongator complex. Its two known substrates—Histone H3 and α-Tubulin—reflect the different roles of Elongator in the cytosol and the nucleus. A picture seems to emerge in which nuclear Elongator could regulate the transcriptional elongation of a subset of stress-inducible genes through acetylation of Histone H3 in the promoter-distal gene body. In the cytosol, Elongator-mediated acetylation of α-Tubulin contributes to intracellular trafficking and cell migration. Defects in both functions of Elongator have been implicated in neurodegenerative disorders.


Biochemical Pharmacology | 2008

Deregulated expression of pro-survival and pro-apoptotic p53-dependent genes upon Elongator deficiency in colon cancer cells

Isabelle Cornez; Catherine Creppe; Magali Gillard; Benoı̂t Hennuy; Jean-Paul Chapelle; Emmanuel Dejardin; Marie-Paule Merville; Pierre Close; Alain Chariot

Elongator, a multi-subunit complex assembled by the IkappaB kinase-associated protein (IKAP)/hELP1 scaffold protein is involved in transcriptional elongation in the nucleus as well as in tRNA modifications in the cytoplasm. However, the biological processes regulated by Elongator in human cells only start to be elucidated. Here we demonstrate that IKAP/hELP1 depleted colon cancer-derived cells show enhanced basal expression of some but not all pro-apoptotic p53-dependent genes such as BAX. Moreover, Elongator deficiency causes increased basal and daunomycin-induced expression of the pro-survival serum- and glucocorticoid-induced protein kinase (SGK) gene through a p53-dependent pathway. Thus, our data collectively demonstrate that Elongator deficiency triggers the activation of p53-dependent genes harbouring opposite functions with respect to apoptosis.

Collaboration


Dive into the Catherine Creppe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vanesa Valero

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulrich Siebenlist

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Marcus Buschbeck

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge