Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine D. Nobes is active.

Publication


Featured researches published by Catherine D. Nobes.


Nature | 2010

Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis

Yingdi Wang; Masanori Nakayama; Mara E. Pitulescu; Tim Schmidt; Magdalena L. Bochenek; Akira Sakakibara; Susanne Adams; Alice Davy; Urban Deutsch; Urs Lüthi; Alcide Barberis; Laura E. Benjamin; Taija Mäkinen; Catherine D. Nobes; Ralf H. Adams

In development, tissue regeneration or certain diseases, angiogenic growth leads to the expansion of blood vessels and the lymphatic vasculature. This involves endothelial cell proliferation as well as angiogenic sprouting, in which a subset of cells, termed tip cells, acquires motile, invasive behaviour and extends filopodial protrusions. Although it is already appreciated that angiogenesis is triggered by tissue-derived signals, such as vascular endothelial growth factor (VEGF) family growth factors, the resulting signalling processes in endothelial cells are only partly understood. Here we show with genetic experiments in mouse and zebrafish that ephrin-B2, a transmembrane ligand for Eph receptor tyrosine kinases, promotes sprouting behaviour and motility in the angiogenic endothelium. We link this pro-angiogenic function to a crucial role of ephrin-B2 in the VEGF signalling pathway, which we have studied in detail for VEGFR3, the receptor for VEGF-C. In the absence of ephrin-B2, the internalization of VEGFR3 in cultured cells and mutant mice is defective, which compromises downstream signal transduction by the small GTPase Rac1, Akt and the mitogen-activated protein kinase Erk. Our results show that full VEGFR3 signalling is coupled to receptor internalization. Ephrin-B2 is a key regulator of this process and thereby controls angiogenic and lymphangiogenic growth.


Nature Cell Biology | 2003

Rac-dependent trans-endocytosis of ephrinBs regulates Eph-ephrin contact repulsion

Daniel J. Marston; Sarah Dickinson; Catherine D. Nobes

Eph receptor–ephrin signals are important for controlling repulsive and attractive cell movements during tissue patterning in embryonic development. However, the dynamic cellular responses to these signals at cell–cell contact sites are poorly understood. To examine these events we have used cell microinjection to express EphB4 and ephrinB2 in adjacent Swiss 3T3 fibroblasts and have studied the interaction of the injected cells using time-lapse microscopy. We show that Eph receptors are locally activated wherever neighbouring cells make contact. This triggers dynamic, Rac-regulated membrane ruffles at the Eph–ephrin contact sites. Subsequently, the receptor and ligand cells retract from one another, concomitantly with the endocytosis of the activated Eph receptors and their bound, full-length ephrinB ligands. Both the internalization of the receptor–ligand complexes and the subsequent cell retraction events are dependent on actin polymerization, which in turn is dependent on Rac signalling within the receptor-expressing cells. Similar events occur in primary human endothelial cells. Our findings suggest a novel mechanism for cell repulsion, in which the contact between Eph-expressing and ephrin-expressing cells is destabilized by the localized phagocytosis of the ligand-expressing cell plasma membrane by the receptor-expressing cell.


Nature Cell Biology | 2010

Competition amongst Eph receptors regulates contact inhibition of locomotion and invasiveness in prostate cancer cells.

Jonathan W. Astin; Jennifer Batson; Shereen Kadir; Jessica Charlet; Raj Persad; David Gillatt; Jon Oxley; Catherine D. Nobes

Metastatic cancer cells typically fail to halt migration on contact with non-cancer cells. This invasiveness is in contrast to normal mesenchymal cells that retract on contact with another cell. Why cancer cells are defective in contact inhibition of locomotion is not understood. Here, we analyse the dynamics of prostate cancer cell lines co-cultured with fibroblasts, and demonstrate that a combinatorial code of Eph receptor activation dictates whether cell migration will be contact inhibited. The unimpeded migration of metastatic PC-3 cells towards fibroblasts is dependent on activation of EphB3 and EphB4 by ephrin-B2, which we show activates Cdc42 and cell migration. Knockdown of EphB3 and EphB4 restores contact inhibition of locomotion to PC-3 cells. Conversely, homotypic collisions between two cancer cells results in contact inhibition of locomotion, mediated by EphA–Rho–Rho kinase (ROCK) signalling. Thus, the migration of cancer cells can switch from restrained to invasive, depending on the Eph-receptor profile of the cancer cell and the reciprocal ephrin ligands expressed by neighbouring cells.


Journal of Cell Science | 2011

Microtubule remodelling is required for the front−rear polarity switch during contact inhibition of locomotion

Shereen Kadir; Jonathan W. Astin; Lubna Tahtamouni; Paul Martin; Catherine D. Nobes

When migrating mesenchymal cells collide, they exhibit a ‘contact inhibition of locomotion’ response that results in reversal of their front–rear polarity by extension of a new leading edge, which enables their migration away from the opposing contacted cell. The critical cytoskeletal rearrangements underpinning these mutual repulsion events are currently unknown. We found that during fibroblast cell–cell collisions, microtubules at the region of contact increase their frequency of catastrophe, their rates of shrinkage and growth, and concomitantly, a new microtubule array is established at a new leading edge. We show that Rho and ROCK activity is necessary for this repulsion response, and we observed increased microtubule stabilisation as a consequence of ROCK inhibition. Importantly, partial destabilisation of microtubules, by co-treatment with a low dose of nocodazole, restored microtubule dynamics to that of untreated cells and rescued contact inhibition of locomotion in ROCK-inhibited cells. Although there was an increase in microtubule growth or shrinkage rates in Y27632 cell–cell collisions, these failed to reach the same level of dynamicity compared with untreated collisions. Our data suggest that microtubule dynamics at contact sites must increase beyond a threshold for a cell to switch its front–rear polarity, and that microtubule stabilisation can lead to a failure of contact inhibition of locomotion.


Biochemical Journal | 2007

Co-operative Cdc42 and Rho signalling mediates ephrinB-triggered endothelial cell retraction

Gillian Groeger; Catherine D. Nobes

Cell repulsion responses to Eph receptor activation are linked to rapid actin cytoskeletal reorganizations, which in turn are partially mediated by Rho-ROCK (Rho kinase) signalling, driving actomyosin contractility. In the present study, we show that Rho alone is not sufficient for this repulsion response. Rather, Cdc42 (cell division cycle 42) and its effector MRCK (myotonic dystrophy kinase-related Cdc42-binding kinase) are also critical for ephrinB-induced cell retraction. Stimulation of endothelial cells with ephrinB2 triggers rapid, but transient, cell retraction. We show that, although membrane retraction is fully blocked by blebbistatin (a myosin-II ATPase inhibitor), it is only partially blocked by inhibiting Rho-ROCK signalling, suggesting that there is ROCK-independent signalling to actomyosin contractility downstream of EphBs. We find that a combination of either Cdc42 or MRCK inhibition with ROCK inhibition completely abolishes the repulsion response. Additionally, endocytosis of ephrin-Eph complexes is not required for initial cell retraction, but is essential for subsequent Rac-mediated re-spreading of cells. Our data reveal a complex interplay of Rho, Rac and Cdc42 in the process of EphB-mediated cell retraction-recovery responses.


Eye | 1994

Repair of excisional wounds in the embryo.

Paul Martin; Catherine D. Nobes; Jane T McCluskey; Julian Lewis

Wound healing in the embryo, just as in the adult, comprises two tissue movements: re-epithelialisation and connective-tissue contraction. In this brief review we describe our recent studies of these two movements in both chick and rodent embryo model systems. In the chick we have evidence that the embryonic wound epidermis is drawn forwards by contraction of an actin purse-string extending around the circumference of the wound, rather than by lamellipodial crawling as in adult healing. Significant connective-tissue contraction also occurs. In the rat and mouse embryo we have examined expression of transcription factors and growth factors at the wound edge. We discuss our observations that the immediate-early gene c-fos and the growth factor transforming growth factor beta-1 are rapidly induced at the embryonic wound margin, and the possibility that these signals may trigger proliferation of wound edge cells and contraction of the exposed wound mesenchyme.


Biology Open | 2014

EphA receptors regulate prostate cancer cell dissemination through Vav2-RhoA mediated cell-cell repulsion

Jennifer Batson; Lucy MacCarthy-Morrogh; Amy Archer; Helen Tanton; Catherine D. Nobes

ABSTRACT Metastatic prostate cancer cells display EphB receptor-mediated attraction when they contact stromal fibroblasts but EphA-driven repulsion when they contact one another. The impact of these ‘social’ interactions between cells during cancer cell invasion and the signalling mechanisms downstream of Eph receptors are unclear. Here we show that EphA receptors regulate prostate cancer cell dissemination in a 2D dispersal assay and in a 3D cancer cell spheroid assay. We show that EphA receptors signal via the exchange factor Vav2 to activate RhoA and that both Vav2 and RhoA are required for prostate cancer cell–cell repulsion. Furthermore, we find that in EphA2/EphA4, Vav2 or RhoA siRNA-treated cells, contact repulsion can be restored by partial microtubule destabilisation. We propose that EphA–Vav2–RhoA-mediated repulsion between contacting cancer cells at the tumour edge could enhance their local invasion away from the primary tumour.


Cell Reports | 2015

Ephrin-Bs drive junctional downregulation and actin stress fiber disassembly to enable wound re-epithelialization

Robert Nunan; Jessica Campbell; Ryoichi Mori; Mara E. Pitulescu; Wen Guo Jiang; Keith Gordon Harding; Ralf H. Adams; Catherine D. Nobes; Paul Martin

Summary For a skin wound to successfully heal, the cut epidermal-edge cells have to migrate forward at the interface between scab and healthy granulation tissue. Much is known about how lead-edge cells migrate, but very little is known about the mechanisms that enable active participation by cells further back. Here we show that ephrin-B1 and its receptor EphB2 are both upregulated in vivo, just for the duration of repair, in the first 70 or so rows of epidermal cells, and this signal leads to downregulation of the molecular components of adherens and tight (but not desmosomal) junctions, leading to loosening between neighbors and enabling shuffle room among epidermal cells. Additionally, this signaling leads to the shutdown of actomyosin stress fibers in these same epidermal cells, which may act to release tension within the wound monolayer. If this signaling axis is perturbed, then disrupted healing is a consequence in mouse and man.


Journal of Cell Science | 2007

Ena/VASP proteins mediate repulsion from ephrin ligands

Iwan Evans; Thomas Renné; Frank B. Gertler; Catherine D. Nobes

Ena/VASP proteins negatively regulate cell motility and contribute to repulsion from several guidance cues; however, there is currently no evidence for a role downstream of Eph receptors. Eph receptors mediate repulsion from ephrins at sites of intercellular contact during several developmental migrations. For example, the expression of ephrin-Bs in posterior halves of somites restricts neural crest cell migration to the anterior halves. Here we show that ephrin-B2 destabilises neural crest cell lamellipodia when presented in a substrate-bound or soluble form. Our timelapse studies show that repulsive events are associated with the rearward collapse and subsequent loss of lamellipodia as membrane ruffles. We hypothesise that Ena/VASP proteins contribute to repulsion from ephrins by destabilising cellular protrusions and show that Ena/VASP-deficient fibroblasts exhibit reduced repulsion from both ephrin-A and ephrin-B stripes compared to wild-type controls. Moreover, when EphB4 and ephrin-B2 were expressed in neighbouring Swiss 3T3 fibroblasts, VASP and Mena co-accumulated with activated Eph receptors at protrusions formed by EphB4-expressing cells. Sequestration of Ena/VASP proteins away from the periphery of these cells inhibited Eph receptor internalisation, a process that facilitates repulsion. Our results suggest that Ena/VASP proteins regulate ephrin-induced Eph receptor signalling events, possibly by destabilising lamellipodial protrusions.


Journal of Microscopy | 2013

Regulation of contact inhibition of locomotion by Eph-ephrin signalling

Jennifer Batson; Jonathan W. Astin; Catherine D. Nobes

Contact inhibition of locomotion (CIL) occurs when a cell stops migrating in a particular direction upon contact with another cell. Many cancer cells show Contact inhibition of locomotion when contacting one another but display contact‐unimpeded migration following collision with noncancer cells. Here we review current understanding of Contact inhibition of locomotion, from Abercrombies historical studies of cells in tissue culture to more recent analyses of Contact inhibition of locomotion in vivo. We discuss the cellular machinery required for CIL and the molecular signals that regulate it. We focus on our recent finding that in prostate cancer cells, Contact inhibition of locomotion is regulated by a balance between EphA and EphB receptor signalling. We show that, as recently described for chick heart fibroblasts, microtubule dynamics are required for Contact inhibition of locomotion in prostate cancer cells and we propose that stabilization of microtubules could account for defective Contact inhibition of locomotion between cancer cells and noncancer cells.

Collaboration


Dive into the Catherine D. Nobes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Dickinson

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison C. Lloyd

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge