Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine Daly is active.

Publication


Featured researches published by Catherine Daly.


Journal of Clinical Oncology | 2009

KRAS and BRAF Mutations in Advanced Colorectal Cancer Are Associated With Poor Prognosis but Do Not Preclude Benefit From Oxaliplatin or Irinotecan: Results From the MRC FOCUS Trial

Susan Richman; Matthew T. Seymour; Philip A. Chambers; Faye Elliott; Catherine Daly; Angela M. Meade; Graham R. Taylor; Jennifer H. Barrett; P. Quirke

PURPOSE Activating mutation of the KRAS oncogene is an established predictive biomarker for resistance to anti-epidermal growth factor receptor (anti-EGFR) therapies in advanced colorectal cancer (aCRC). We wanted to determine whether KRAS and/or BRAF mutation is also a predictive biomarker for other aCRC therapies. PATIENTS AND METHODS The Medical Research Council Fluorouracil, Oxaliplatin and Irinotecan: Use and Sequencing (MRC FOCUS) trial compared treatment sequences including first-line fluorouracil (FU), FU/irinotecan or FU/oxaliplatin in aCRC. Tumor blocks were obtained from 711 consenting patients. DNA was extracted and KRAS codons 12, 13, and 61 and BRAF codon 600 were assessed by pyrosequencing. Mutation (mut) status was assessed first as a prognostic factor and then as a predictive biomarker for the benefit of adding irinotecan or oxaliplatin to FU. The association of BRAF-mut with loss of MLH1 was assessed by immunohistochemistry. RESULTS Three hundred eight (43.3%) of 711 patients had KRAS-mut and 56 (7.9%) of 711 had BRAF-mut. Mutation of KRAS, BRAF, or both was present in 360 (50.6%) of 711 patients. Mutation in either KRAS or BRAF was a poor prognostic factor for overall survival (OS; hazard ratio [HR], 1.40; 95% CI, 1.20 to 1.65; P < .0001) but had minimal impact on progression-free survival (PFS; HR, 1.16; 95% CI, 1.00 to 1.36; P = .05). Mutation status did not affect the impact of irinotecan or oxaliplatin on PFS or OS. BRAF-mut was weakly associated with loss of MLH1 staining (P = .012). CONCLUSION KRAS/BRAF mutation is associated with poor prognosis but is not a predictive biomarker for irinotecan or oxaliplatin. There is no evidence that patients with KRAS/BRAF mutated tumors are less likely to benefit from these standard chemotherapy agents.


Journal of Clinical Oncology | 2008

Predictive Biomarkers of Chemotherapy Efficacy in Colorectal Cancer: Results From the UK MRC FOCUS Trial

Michael S. Braun; Susan Richman; P. Quirke; Catherine Daly; Julian Adlard; Faye Elliott; Jennifer H. Barrett; Peter Selby; Angela M. Meade; Richard Stephens; Mahesh K. B. Parmar; Matthew T. Seymour

PURPOSE Candidate predictive biomarkers for irinotecan and oxaliplatin were assessed in 1,628 patients in Fluorouracil, Oxaliplatin, CPT-11: Use and Sequencing (FOCUS), a large randomized trial of fluorouracil alone compared with fluorouracil and irinotecan and compared with fluorouracil and oxaliplatin in advanced colorectal cancer. METHODS The candidate biomarkers were: tumor immunohistochemistry for MLH1/MSH2, p53, topoisomerase-1 (Topo1), excision repair cross-complementing gene 1 (ERCC1), O-6-methylguanine-DNA-methyltranserase (MGMT), and cyclooxygenase 2 (COX2); germline DNA polymorphisms in GSTP1, ABCB1, XRCC1, ERCC2, and UGT1A1. These were screened in more than 750 patients for interaction with benefit from irinotecan or oxaliplatin; two markers (Topo1 and MLH1/MSH2) met criteria to be taken forward for analysis in the full population. Primary end points were progression-free survival (PFS) and overall survival. RESULTS One thousand three hundred thirteen patients (81%) were assessable for Topo1 immunohistochemistry (low, < 10%; moderate, 10% to 50%; or high, > 50% tumor nuclei). In patients with low Topo1, PFS was not improved by the addition of either irinotecan (hazard ratio [HR], 0.98; 95% CI, 0.78 to 1.22) or oxaliplatin (HR, 0.85; 95% CI, 0.68 to 1.07); conversely, patients with moderate/high Topo1 benefited from the addition of either drug (HR, 0.48 to 0.70 in all categories; interaction P = .005; overall, P = .001 for irinotecan; P = .05 for oxaliplatin). High Topo1 was associated with a major overall survival benefit with first-line combination chemotherapy (HR, 0.60; median benefit, 5.3 months); patients with moderate or low Topo1 did not benefit (HR, 0.92 and 1.09, respectively; interaction P = .005). MLH1/MSH2 did not show significant interaction with treatment, although the low rate of loss (4.4%) limits the power of the study for this biomarker. CONCLUSION Topo1 immunohistochemistry identified subpopulations that did or did not benefit from irinotecan, and possibly also from oxaliplatin. If verified independently, this information will contribute to the individualization of treatment for colorectal cancer.


Nucleic Acids Research | 2010

Using next-generation sequencing for high resolution multiplex analysis of copy number variation from nanogram quantities of DNA from formalin-fixed paraffin-embedded specimens

Henry M. Wood; Ornella Belvedere; Caroline Conway; Catherine Daly; Rebecca Chalkley; Melissa Bickerdike; Claire McKinley; Phil Egan; Lisa Ross; Bruce E. Hayward; J.E. Morgan; Leslie Davidson; Ken MacLennan; T.K. Ong; Kostas Papagiannopoulos; Ian Cook; David J. Adams; Graham R. Taylor; Pamela Rabbitts

The use of next-generation sequencing technologies to produce genomic copy number data has recently been described. Most approaches, however, reply on optimal starting DNA, and are therefore unsuitable for the analysis of formalin-fixed paraffin-embedded (FFPE) samples, which largely precludes the analysis of many tumour series. We have sought to challenge the limits of this technique with regards to quality and quantity of starting material and the depth of sequencing required. We confirm that the technique can be used to interrogate DNA from cell lines, fresh frozen material and FFPE samples to assess copy number variation. We show that as little as 5 ng of DNA is needed to generate a copy number karyogram, and follow this up with data from a series of FFPE biopsies and surgical samples. We have used various levels of sample multiplexing to demonstrate the adjustable resolution of the methodology, depending on the number of samples and available resources. We also demonstrate reproducibility by use of replicate samples and comparison with microarray-based comparative genomic hybridization (aCGH) and digital PCR. This technique can be valuable in both the analysis of routine diagnostic samples and in examining large repositories of fixed archival material.


Journal of Clinical Oncology | 2009

Association of Molecular Markers With Toxicity Outcomes in a Randomized Trial of Chemotherapy for Advanced Colorectal Cancer: The FOCUS Trial

Michael S. Braun; Susan Richman; L. C. Thompson; Catherine Daly; Angela M. Meade; Julian Adlard; James M. Allan; Mahesh K. B. Parmar; P. Quirke; Matthew T. Seymour

PURPOSE Predicting efficacy and toxicity could potentially allow individualization of cancer therapy. We investigated putative pharmacogenetic markers of chemotherapy toxicity in a large randomized trial. PATIENTS, MATERIALS, AND METHODS Patients were randomly assigned to different sequences of chemotherapy for advanced colorectal cancer. First-line therapy was fluorouracil (FU), irinotecan/FU (IrFU) or oxaliplatin/FU (OxFU). Patients allocated first-line FU had planned second-line irinotecan alone, IrFU, or OxFU. The primary toxicity outcome measure was toxicity-induced delay or dose reduction; the secondary outcome was Common Terminology Criteria of Adverse Events grade >or= 3 toxicity. DNA was analyzed in 1,188 patients; 1,036 were assessable for the primary outcome, including 688 treated with FU, 270 with IrFU (first or second line), 280 with OxFU (first or second line), 184 with irinotecan alone, and 454 with any irinotecan-containing regimen. Ten polymorphisms were assessed: thymidylate synthase-enhancer region (TYMS-ER), thymidylate synthase 1494 (TYMS-1494), dihydropyrimidine dehydrogenase (DPYD), methylenetetrahydrofolate reductase (MTHFR), mutL homolog 1 (MLH1), UDP glucuronyltransferase (UGT1A1), ATP-binding cassette group B gene 1 (ABCB1), x-ray cross-complementing group 1 (XRCC1), glutathione-S-transferase P1 (GSTP1), and excision repair cross-complementing gene 2 (ERCC2). Results Using the primary outcome measure, no polymorphism was significantly associated (P < .01) with the toxicity of any regimen or with the difference in toxicity of IrFU or OxFU versus FU alone. Trends (of doubtful significance) were seen for associations of XRCC1, ERCC2, and GSTP1 with toxicity during irinotecan regimens: XRCC1, primary end point, any irinotecan-containing regimen (P = .045); ERCC2, secondary end point, irinotecan alone (P = .003); GSTP1, secondary end point; IrFU (P = .039); and irinotecan alone (P = .05). There was no evidence of association of UGT1A1*28 with irinotecan toxicity. CONCLUSION These results do not support the routine clinical use of the evaluated polymorphisms, including UGT1A1*28. Further investigation of XRCC1, ERCC2, and GSTP1 as potential predictors of irinotecan toxicity is warranted.


Analytical Cellular Pathology | 2011

Intra-tumoral heterogeneity of KRAS and BRAF mutation status in patients with advanced colorectal cancer (aCRC) and cost-effectiveness of multiple sample testing.

Susan Richman; Philip A. Chambers; Matthew T. Seymour; Catherine Daly; Sophie Grant; Gemma Hemmings; P. Quirke

KRAS mutation status is established as a predictive biomarker of benefit from anti-EGFr therapies. Mutations are normally assessed using DNA extracted from one formalin-fixed, paraffin-embedded (FFPE) tumor block. We assessed heterogeneity of KRAS and BRAF mutation status intra-tumorally (multiple blocks from the same primary tumor). We also investigated the utility and efficiency of genotyping a ‘DNA cocktail’ prepared from multiple blocks. We studied 68 consenting patients in two randomized clinical trials. DNA was extracted, from ≥2 primary tumor FFPE blocks per patient. DNA was genotyped by pyrosequencing for KRAS codons 12, 13 and 61 and BRAF codon 600. In patients with heterogeneous mutation status, DNA cocktails were prepared and genotyped. Among 69 primary tumors in 68 patients, 7 (10.1%) showed intratumoral heterogeneity; 5 (7.2%) at KRAS codons 12, 13 and 2 (2.9%) at BRAF codon 600. In patients displaying heterogeneity, the relevant KRAS or BRAF mutation was also identified in ‘DNA cocktail’ samples when including DNA from mutant and wild-type blocks. Heterogeneity is uncommon but not insignificant. Testing DNA from a single block will wrongly assign wild-type status to 10% patients. Testing more than one block, or preferably preparation of a ‘DNA cocktail’ from two or more tumor blocks, improves mutation detection at minimal extra cost.


Bioinformatics | 2015

GeneTIER: prioritization of candidate disease genes using tissue-specific gene expression profiles

Agne Antanaviciute; Catherine Daly; Laura A. Crinnion; Alexander F. Markham; Christopher M. Watson; David T. Bonthron; Ian M. Carr

Motivation: In attempts to determine the genetic causes of human disease, researchers are often faced with a large number of candidate genes. Linkage studies can point to a genomic region containing hundreds of genes, while the high-throughput sequencing approach will often identify a great number of non-synonymous genetic variants. Since systematic experimental verification of each such candidate gene is not feasible, a method is needed to decide which genes are worth investigating further. Computational gene prioritization presents itself as a solution to this problem, systematically analyzing and sorting each gene from the most to least likely to be the disease-causing gene, in a fraction of the time it would take a researcher to perform such queries manually. Results: Here, we present Gene TIssue Expression Ranker (GeneTIER), a new web-based application for candidate gene prioritization. GeneTIER replaces knowledge-based inference traditionally used in candidate disease gene prioritization applications with experimental data from tissue-specific gene expression datasets and thus largely overcomes the bias toward the better characterized genes/diseases that commonly afflict other methods. We show that our approach is capable of accurate candidate gene prioritization and illustrate its strengths and weaknesses using case study examples. Availability and Implementation: Freely available on the web at http://dna.leeds.ac.uk/GeneTIER/. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


British Journal of Cancer | 2015

Clinical and genomic analysis of a randomised phase II study evaluating anastrozole and fulvestrant in postmenopausal patients treated for large operable or locally advanced hormone-receptor-positive breast cancer

Nathalie Quenel-Tueux; Marc Debled; Justine Rudewicz; Gaëtan MacGrogan; Marina Pulido; Louis Mauriac; F. Dalenc; Thomas Bachelot; Barbara Lortal; C. Breton-Callu; Nicolas Madranges; Christine Tunon de Lara; Marion Fournier; Hervé Bonnefoi; Hayssam Soueidan; Macha Nikolski; Audrey Gros; Catherine Daly; Henry M. Wood; Pamela Rabbitts; Richard Iggo

Background:The aim of this study was to assess the efficacy of neoadjuvant anastrozole and fulvestrant treatment of large operable or locally advanced hormone-receptor-positive breast cancer not eligible for initial breast-conserving surgery, and to identify genomic changes occurring after treatment.Methods:One hundred and twenty post-menopausal patients were randomised to receive 1 mg anastrozole (61 patients) or 500 mg fulvestrant (59 patients) for 6 months. Genomic DNA copy number profiles were generated for a subgroup of 20 patients before and after treatment.Results:A total of 108 patients were evaluable for efficacy and 118 for toxicity. The objective response rate determined by clinical palpation was 58.9% (95% CI=45.0–71.9) in the anastrozole arm and 53.8% (95% CI=39.5–67.8) in the fulvestrant arm. The breast-conserving surgery rate was 58.9% (95% CI=45.0–71.9) in the anastrozole arm and 50.0% (95% CI=35.8–64.2) in the fulvestrant arm. Pathological responses >50% occurred in 24 patients (42.9%) in the anastrozole arm and 13 (25.0%) in the fulvestrant arm. The Ki-67 score fell after treatment but there was no significant difference between the reduction in the two arms (anastrozole 16.7% (95% CI=13.3–21.0) before, 3.2% (95% CI=1.9–5.5) after, n=43; fulvestrant 17.1% (95%CI=13.1–22.5) before, 3.2% (95% CI=1.8–5.7) after, n=38) or between the reduction in Ki-67 in clinical responders and non-responders. Genomic analysis appeared to show a reduction of clonal diversity following treatment with selection of some clones with simpler copy number profiles.Conclusions:Both anastrozole and fulvestrant were effective and well-tolerated, enabling breast-conserving surgery in over 50% of patients. Clonal changes consistent with clonal selection by the treatment were seen in a subgroup of patients.


American Journal of Medical Genetics Part A | 2014

Diagnostic whole genome sequencing and split‐read mapping for nucleotide resolution breakpoint identification in CNTNAP2 deficiency syndrome

Christopher M. Watson; Laura A. Crinnion; Antigoni Tzika; Alison Mills; Andrea Coates; Maria Pendlebury; Sarah Hewitt; Sally M. Harrison; Catherine Daly; Paul Roberts; Ian M. Carr; Eamonn Sheridan; David T. Bonthron

Whole genome sequencing (WGS) has the potential to report on all types of genetic abnormality, thus converging diagnostic testing on a single methodology. Although WGS at sufficient depth for robust detection of point mutations is still some way from being affordable for diagnostic purposes, low‐coverage WGS is already an excellent method for detecting copy number variants (“CNVseq”). We report on a family in which individuals presented with a presumed autosomal recessive syndrome of severe intellectual disability and epilepsy. Array comparative genomic hybridization (CGH) analysis had revealed a homozygous deletion apparently lying within intron 3 of CNTNAP2. Since this was too small for confirmation by FISH, CNVseq was used, refining the extent of this mutation to approximately 76.8 kb, encompassing CNTNAP2 exon 3 (an out‐of‐frame deletion). To characterize the precise breakpoints and provide a rapid molecular diagnostic test, we resequenced the CNVseq library at medium coverage and performed split read mapping. This yielded information for a multiplex polymerase chain reaction (PCR) assay, used for cascade screening and/or prenatal diagnosis in this family. This example demonstrates a rapid, low‐cost approach to converting molecular cytogenetic findings into robust PCR‐based tests.


Genomics | 2012

A computational index derived from whole-genome copy number analysis is a novel tool for prognosis in early stage lung squamous cell carcinoma.

Ornella Belvedere; Stefano Berri; Rebecca Chalkley; Caroline Conway; Fabio Barbone; Federica Edith Pisa; Kenneth A. MacLennan; Catherine Daly; Melissa Alsop; J.E. Morgan; Jessica Menis; Peter Tcherveniakov; Kostas Papagiannopoulos; Pamela Rabbitts; Henry M. Wood

Squamous cell carcinoma of the lung is remarkable for the extent to which the same chromosomal abnormalities are detected in individual tumours. We have used next generation sequencing at low coverage to produce high resolution copy number karyograms of a series of 89 non-small cell lung tumours specifically of the squamous cell subtype. Because this methodology is able to create karyograms from formalin-fixed paraffin-embedded material, we were able to use archival stored samples for which survival data were available and correlate frequently occurring copy number changes with disease outcome. No single region of genomic change showed significant correlation with survival. However, adopting a whole-genome approach, we devised an algorithm that relates to total genomic damage, specifically the relative ratios of copy number states across the genome. This algorithm generated a novel index, which is an independent prognostic indicator in early stage squamous cell carcinoma of the lung.


The Journal of Pathology | 2015

The clonal relationships between pre‐cancer and cancer revealed by ultra‐deep sequencing

Henry M. Wood; Caroline Conway; Catherine Daly; Rebecca Chalkley; Stefano Berri; Burcu Sengüven; Lucy F. Stead; Lisa Ross; Philip Egan; Preetha Chengot; Jennifer L. Graham; Neeraj Sethi; T.K. Ong; Alec S. High; Kenneth A. MacLennan; Pamela Rabbitts

The study of the relationships between pre‐cancer and cancer and identification of early driver mutations is becoming increasingly important as the value of molecular markers of early disease and personalised drug targets is recognized, especially now the extent of clonal heterogeneity in fully invasive disease is being realized. It has been assumed that pre‐cancerous lesions exhibit a fairly passive progression to invasive disease; the degree to which they, too, are heterogeneous is unknown. We performed ultra‐deep sequencing of thousands of selected mutations, together with copy number analysis, from multiple, matched pre‐invasive lesions, primary tumours and metastases from five patients with oral cancer, some with multiple primary tumours presenting either synchronously or metachronously, totalling 75 samples. This allowed the clonal relationships between the samples to be observed for each patient. We expose for the first time the unexpected variety and complexity of the relationships between this group of oral dysplasias and their associated carcinomas and, ultimately, the diversity of processes by which tumours are initiated, spread and metastasize. Instead of a series of genomic precursors of their adjacent invasive disease, we have shown dysplasia to be a distinct dynamic entity, refuting the belief that pre‐cancer and invasive tumours with a close spatial relationship always have linearly related genomes. We show that oral pre‐cancer exhibits considerable subclonal heterogeneity in its own right, that mutational changes in pre‐cancer do not predict the onset of invasion, and that the genomic pathway to invasion is neither unified nor predictable. Sequence data from this study have been deposited in the European Nucleotide Archive, Accession No. PRJEB6588. Copyright

Collaboration


Dive into the Catherine Daly's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge