Catherine E. Stickley
Norwegian Polar Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Catherine E. Stickley.
Paleoceanography | 2008
Jan Backman; Martin Jakobsson; Martin Frank; Francesca Sangiorgi; Henk Brinkhuis; Catherine E. Stickley; Matthew O'Regan; Reidar Løvlie; Heiko Pälike; David J. A. Spofforth; Jérôme Gattacecca; Kate Moran; John W. King; Chip Heil
Cenozoic biostratigraphic, cosmogenic isotope, magnetostratigraphic, and cyclostratigraphic data derived from Integrated Ocean Drilling Program Expedition 302, the Arctic Coring Expedition (ACEX), are merged into a coherent age model. This age model has low resolution because of poor core recovery, limited availability of biostratigraphic information, and the complex nature of the magnetostratigraphic record. One 2.2 Ma long hiatus occurs in the late Miocene; another spans 26 Ma (18.2–44.4 Ma). The average sedimentation rate in the recovered Cenozoic sediments is about 15 m/Ma. Core-seismic correlation links the ACEX sediments to the reflection seismic stratigraphy of line AWI-91090, on which the ACEX sites were drilled. This seismostratigraphy can be correlated over wide geographic areas in the central Arctic Ocean, implying that the ACEX age model can be extended well beyond the drill sites.
Nature | 2012
Jörg Pross; Lineth Contreras; Peter K. Bijl; David R. Greenwood; Steven M. Bohaty; Stefan Schouten; James Bendle; Ursula Röhl; Lisa Tauxe; J. Ian Raine; Claire E Huck; Tina van de Flierdt; Stewart S. R. Jamieson; Catherine E. Stickley; Bas van de Schootbrugge; Carlota Escutia; Henk Brinkhuis
The warmest global climates of the past 65 million years occurred during the early Eocene epoch (about 55 to 48 million years ago), when the Equator-to-pole temperature gradients were much smaller than today and atmospheric carbon dioxide levels were in excess of one thousand parts per million by volume. Recently the early Eocene has received considerable interest because it may provide insight into the response of Earth’s climate and biosphere to the high atmospheric carbon dioxide levels that are expected in the near future as a consequence of unabated anthropogenic carbon emissions. Climatic conditions of the early Eocene ‘greenhouse world’, however, are poorly constrained in critical regions, particularly Antarctica. Here we present a well-dated record of early Eocene climate on Antarctica from an ocean sediment core recovered off the Wilkes Land coast of East Antarctica. The information from biotic climate proxies (pollen and spores) and independent organic geochemical climate proxies (indices based on branched tetraether lipids) yields quantitative, seasonal temperature reconstructions for the early Eocene greenhouse world on Antarctica. We show that the climate in lowland settings along the Wilkes Land coast (at a palaeolatitude of about 70° south) supported the growth of highly diverse, near-tropical forests characterized by mesothermal to megathermal floral elements including palms and Bombacoideae. Notably, winters were extremely mild (warmer than 10 °C) and essentially frost-free despite polar darkness, which provides a critical new constraint for the validation of climate models and for understanding the response of high-latitude terrestrial ecosystems to increased carbon dioxide forcing.
Gsa Today | 2006
Amy Leventer; Eugene W. Domack; Robert B. Dunbar; Jennifer Pike; Catherine E. Stickley; Eleanor Maddison; Stefanie Ann Brachfeld; Patricia L. Manley; Charlie McClennen
The Antarctic shelf is traversed by large-scale troughs developed by glacial erosion. Swath bathymetric, lithologic, and chronologic data from jumbo piston cores from four sites along the East Antarctic margin (Iceberg Alley, the Nielsen Basin, the Svenner Channel, and the Mertz-Ninnis Trough) are used to demonstrate that these cross-shelf features controlled development of calving bay reentrants in the Antarctic ice sheet during deglaciation. At all sites except the Mertz-Ninnis Trough, the transition between the Last Glacial Maximum and the Holocene is characterized by varved couplets deposited during a short interval of extremely high primary productivity in a fjordlike setting. Nearly monospecific layers of the diatom Chaetoceros alternate with slightly more terrigenous layers containing a mixed diatom assemblage. We propose that springtime diatom blooms dominated by Chaetoceros were generated within well-stratified and restricted surface waters of calving bays that were influenced by the input of iron-rich meltwater. Intervening post-bloom summer-fall laminae were formed through the downward flux of terrigenous material sourced from melting glacial ice combined with mixed diatom assemblages. Radiocarbon-based chronologies that constrain the timing of deposition of the varved sediments within calving bay reentrants along the East Antarctic margin place deglaciation between ca. 10,500–11,500 cal yr B.P., post-dating Meltwater Pulse 1A (14,200 cal yr B.P.) and indicating that retreat of ice from the East Antarctic margin was not the major contributor to this pulse of meltwater.
Paleoceanography | 2008
Matthew O'Regan; Kathryn Moran; Jan Backman; Martin Jakobsson; Francesca Sangiorgi; Henk Brinkhuis; Rob Pockalny; Alasdair Skelton; Catherine E. Stickley; Nalan Koc; Hans-Jürgen Brumsack; Debra A. Willard
Drilling results from the Integrated Ocean Drilling Program’s Arctic Coring Expedition (ACEX) to the Lomonosov Ridge (LR) document a 26 million year hiatus that separates freshwater-influenced biosilica-rich deposits of the middle Eocene from fossil-poor glaciomarine silty clays of the early Miocene. Detailed micropaleontological and sedimentological data from sediments surrounding this mid-Cenozoic hiatus describe a shallow water setting for the LR, a finding that conflicts with predrilling seismic predictions and an initial postcruise assessment of its subsidence history that assumed smooth thermally controlled subsidence following rifting. A review of Cenozoic tectonic processes affecting the geodynamic evolution of the central Arctic Ocean highlights a prolonged phase of basin-wide compression that ended in the early Miocene. The coincidence in timing between the end of compression and the start of rapid early Miocene subsidence provides a compelling link between these observations and similarly accounts for the shallow water setting that persisted more than 30 million years after rifting ended. However, for much of the late Paleogene and early Neogene, tectonic reconstructions of the Arctic Ocean describe a landlocked basin, adding additional uncertainty to reconstructions of paleodepth estimates as the magnitude of regional sea level variations remains unknown.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Peter K. Bijl; James Bendle; Steven M. Bohaty; Jörg Pross; Stefan Schouten; Lisa Tauxe; Catherine E. Stickley; Robert McKay; Ursula Röhl; Matthew P Olney; Appy Sluijs; Carlota Escutia; Henk Brinkhuis; Expedition Scientists
The warmest global temperatures of the past 85 million years occurred during a prolonged greenhouse episode known as the Early Eocene Climatic Optimum (52–50 Ma). The Early Eocene Climatic Optimum terminated with a long-term cooling trend that culminated in continental-scale glaciation of Antarctica from 34 Ma onward. Whereas early studies attributed the Eocene transition from greenhouse to icehouse climates to the tectonic opening of Southern Ocean gateways, more recent investigations invoked a dominant role of declining atmospheric greenhouse gas concentrations (e.g., CO2). However, the scarcity of field data has prevented empirical evaluation of these hypotheses. We present marine microfossil and organic geochemical records spanning the early-to-middle Eocene transition from the Wilkes Land Margin, East Antarctica. Dinoflagellate biogeography and sea surface temperature paleothermometry reveal that the earliest throughflow of a westbound Antarctic Counter Current began ∼49–50 Ma through a southern opening of the Tasmanian Gateway. This early opening occurs in conjunction with the simultaneous onset of regional surface water and continental cooling (2–4 °C), evidenced by biomarker- and pollen-based paleothermometry. We interpret that the westbound flowing current flow across the Tasmanian Gateway resulted in cooling of Antarctic surface waters and coasts, which was conveyed to global intermediate waters through invigorated deep convection in southern high latitudes. Although atmospheric CO2 forcing alone would provide a more uniform middle Eocene cooling, the opening of the Tasmanian Gateway better explains Southern Ocean surface water and global deep ocean cooling in the apparent absence of (sub-) equatorial cooling.
Paleoceanography | 2008
Francesca Sangiorgi; H.-J. Brumsack; Debra A. Willard; Stefan Schouten; Catherine E. Stickley; Matthew O'Regan; Gert-Jan Reichart; Jaap S. Sinninghe Damsté; Henk Brinkhuis
The Cenozoic record of the Lomonosov Ridge (central Arctic Ocean) recovered during Integrated Ocean Drilling Program (IODP) Expedition 302 revealed an unexpected 26 Ma hiatus, separating middle Eocene (�44.4 Ma) from lower Miocene sediments (�18.2 Ma). To elucidate the nature of this unconformity, we performed a multiproxy palynological (dinoflagellate cysts, pollen, and spores), micropaleontological (siliceous microfossils), inorganic, and organic (Tetra Ether Index of lipids with 86 carbon atoms (TEX86) and Branched and Isoprenoid Tetraether (BIT)) geochemical analysis of the sediments from �5 m below to �7 m above the hiatus. Four main paleoenvironmental phases (A–D) are recognized in the sediments encompassing the unconformity, two below (A–B) and two above (C–D): (A) Below the hiatus, proxies show relatively warm temperatures, with Sea Surface Temperatures (TEX86-derived SSTs) of about 8�C and high fresh to brackish water influence. (B) Approaching the hiatus, proxies indicate a cooling trend (TEX86-derived SSTs of �5�C), increased freshwater influence, and progressive shoaling of the Lomonosov Ridge drilling site, located close to or at sea level
Paleoceanography | 2008
Catherine E. Stickley; Nalân Koç; Hans-Jürgen Brumsack; Richard W. Jordan; Itsuki Suto
Integrated Ocean Drilling Program (IODP) Expedition 302, “The Arctic Coring Expedition” (ACEX), unearthed the most significant find of Paleogene siliceous microfossils in nearly 2 decades. 100 m of early middle Eocene, organic-rich, finely laminated sediments contain abundant marine and freshwater siliceous microfossils allowing intriguing insights into central Arctic paleoenvironments during the start of Cenozoic cooling. Largely endemic assemblages of marine diatoms and ebridians are preserved along with very high abundances of chrysophyte cysts, the endogenously formed resting stage of freshwater algae. An overall brackish environment is invoked, but variations in group dominance suggest episodic changes in salinity, stratification, and trophic status. With the backing of inorganic geochemistry we synthesize the sediment characteristics by hypothesizing an environmental model for the cooccurrence of these diverse siliceous microfossil groups. We also report on initial insights into the composition of some of the laminations, which may help explain the formation of this rich sediment archive.
Paleoceanography | 2012
Lisa Tauxe; Catherine E. Stickley; S. Sugisaki; Peter K. Bijl; Steve Bohaty; Henk Brinkhuis; Carlota Escutia; José-Abel Flores; Alexander J. P. Houben; Masao Iwai; Francisco J Jiménez-Espejo; Robert McKay; Sandra Passchier; Jörg Pross; Christina R. Riesselman; Ursula Röhl; Francesca Sangiorgi; Kevin Welsh; Adam Klaus; Annick Fehr; James Bendle; Robert B. Dunbar; Jhon Jairo Gonzàlez; Travis G Hayden; Kota Katsuki; Matthew P Olney; Stephen F. Pekar; Prakash K. Shrivastava; T. van de Flierdt; Trevor Williams
The Integrated Ocean Drilling Program Expedition 318 to the Wilkes Land margin of Antarctica recovered a sedimentary succession ranging in age from lower Eocene to the Holocene. Excellent stratigraphic control is key to understanding the timing of paleoceanographic events through critical climate intervals. Drill sites recovered the lower and middle Eocene, nearly the entire Oligocene, the Miocene from about 17 Ma, the entire Pliocene and much of the Pleistocene. The paleomagnetic properties are generally suitable for magnetostratigraphic interpretation, with well-behaved demagnetization diagrams, uniform distribution of declinations, and a clear separation into two inclination modes. Although the sequences were discontinuously recovered with many gaps due to coring, and there are hiatuses from sedimentary and tectonic processes, the magnetostratigraphic patterns are in general readily interpretable. Our interpretations are integrated with the diatom, radiolarian, calcareous nannofossils and dinoflagellate cyst (dinocyst) biostratigraphy. The magnetostratigraphy significantly improves the resolution of the chronostratigraphy, particularly in intervals with poor biostratigraphic control. However, Southern Ocean records with reliable magnetostratigraphies are notably scarce, and the data reported here provide an opportunity for improved calibration of the biostratigraphic records. In particular, we provide a rare magnetostratigraphic calibration for dinocyst biostratigraphy in the Paleogene and a substantially improved diatom calibration for the Pliocene. This paper presents the stratigraphic framework for future paleoceanographic proxy records which are being developed for the Wilkes Land margin cores. It further provides tight constraints on the duration of regional hiatuses inferred from seismic surveys of the region.
Science | 2013
Alexander J. P. Houben; Peter K. Bijl; Jörg Pross; Steven M. Bohaty; Sandra Passchier; Catherine E. Stickley; Ursula Röhl; S. Sugisaki; Lisa Tauxe; T. van de Flierdt; Matthew P Olney; Francesca Sangiorgi; Appy Sluijs; Carlota Escutia; Henk Brinkhuis
Southern Change Antarctica has been mostly covered by ice since the inception of large-scale continental glaciation during the Oligocene, which profoundly altered the isotopic and mineralogical records of the sediments surrounding the continent. Houben et al. (p. 341) found records of the corresponding living systems in the fossil marine dinoflagellate cysts, which revealed that a microplankton ecosystem, similar to the one that exists today, appeared simultaneously with the first major Antarctic glaciation approximately 34 million years ago. The Southern Ocean plankton ecosystem underwent an abrupt and profound reorganization in the earliest Oligocene. The circum-Antarctic Southern Ocean is an important region for global marine food webs and carbon cycling because of sea-ice formation and its unique plankton ecosystem. However, the mechanisms underlying the installation of this distinct ecosystem and the geological timing of its development remain unknown. Here, we show, on the basis of fossil marine dinoflagellate cyst records, that a major restructuring of the Southern Ocean plankton ecosystem occurred abruptly and concomitant with the first major Antarctic glaciation in the earliest Oligocene (~33.6 million years ago). This turnover marks a regime shift in zooplankton-phytoplankton interactions and community structure, which indicates the appearance of eutrophic and seasonally productive environments on the Antarctic margin. We conclude that earliest Oligocene cooling, ice-sheet expansion, and subsequent sea-ice formation were important drivers of biotic evolution in the Southern Ocean.
Eos, Transactions American Geophysical Union | 2002
Neville Exon; James P. Kennett; Mitch Malone; Henk Brinkhuis; George Chaproniere; Atsuhito Ennyu; Patrick Fothergill; Michael D Fuller; Marianne Grauert; Peter J. Hill; Tom Janecek; Clay Kelly; Jennifer C. Latimer; Kristeen McGonigal; Stefan Nees; Ulysses S. Ninnemann; Dirk Nuernberg; Stephen F. Pekar; Caroline Pellaton; H. A. Pfuhl; Christian P. Robert; Ursula Röhl; Stephen A. Schellenberg; Amelia E. Shevenell; Catherine E. Stickley; Noritoshi Suzuki; Yannick Touchard; Wuchang Wei; Timothy S. White
One of the great stories of geoscience is how Gondwana broke up and the other southern continents drifted northward from Antarctica, which led to major changes in global climate. The recent drilling of Ocean Drilling Project (ODP) Leg 189 addressed in detail what happened as Australia drifted away from Antarctica and the Tasmanian Gateway opened. The drifting contributed to the change in global climate, from relatively warm early Cenozoic “greenhouse” conditions to late Cenozoic “icehouse” conditions. It isolated Antarctica from warm gyral surface currents from the north and provided the critical deepwater conduits that eventually led to ocean conveyor circulation between the Atlantic and Pacific Oceans.