Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine Gourlay-Francé is active.

Publication


Featured researches published by Catherine Gourlay-Francé.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2011

Early genotoxic effects in gill cells and haemocytes of Dreissena polymorpha exposed to cadmium, B[a]P and a combination of B[a]P and Cd

Françoise Vincent-Hubert; Adeline Arini; Catherine Gourlay-Francé

The aim of this study was to assess the genotoxic potential of environmentally relevant concentrations of Cd on the zebra mussel, an important freshwater sentinel organism, and to determine the stability of DNA damage in gill cells and haemocytes. The oxidative DNA damage and the co-genotoxicity of Cd in combination with B[a]P were investigated. We measured DNA damage in haemocytes and gill cells of zebra mussels exposed for 11 days to a constant concentration of Cd (10μg/L), B[a]P (10μg/L) or the two combined chemicals (10μg/L+1μg/L). Enzymatic dissociation of gills with dispase gave the lower percentage DNA in tail, compared with collagenase/dispase or collagenase. Bioaccumulation of cadmium in the soft tissues of mussels exposed to CdCl(2) or CdCl(2)+B[a]P increased in a time-dependent manner indicating that both exposures were effective. Cd (10μg/L) is genotoxic only during the first 3 days of exposure in gill cells, while in haemocytes the genotoxicity of Cd was observed later. B[a]P (10μg/L) induced an early increase of DNA damage in gill cells (after 10h and 1 day), while in both gill cells and haemocytes, B[a]P caused a marked increase of DNA damage after 3 days of exposure. The Cd+B[a]P mixture decreased the DNA-damaging effect of Cd and B[a]P in both cell types. Cd induced an increase of DNA damage in Fpg-treated slides, indicating that Cd contributed to oxidative DNA damage. Cadmium induced a cytogenetic effect in gill cells, assessed by the number of micronuclei, throughout the duration of the exposure, while B[a]P did not induce any cytogenetic effect. B[a]P, Cd and Cd+B[a]P induced a transient increase in the number of bi-nucleated cells. Our data clearly show that gills are more sensitive to Cd and B[a]P, which makes them more suitable for future bio-monitoring studies.


Environmental Pollution | 2012

Towards a renewed research agenda in ecotoxicology

Joan Artigas; G.H.P. Arts; Marc Babut; Anna Barra Caracciolo; Sandrine Charles; Arnaud Chaumot; Bruno Combourieu; Ingela Dahllöf; Denis Despréaux; Benoît J.D. Ferrari; Nikolai Friberg; Jeanne Garric; Olivier Geffard; Catherine Gourlay-Francé; Michaela Hein; Morten Hjorth; Martin Krauss; Hendrika J. De Lange; J. Lahr; Kari K. Lehtonen; Teresa Lettieri; Matthias Liess; Stephen Lofts; Philipp Mayer; Soizic Morin; Albrecht Paschke; Claus Svendsen; Philippe Usseglio-Polatera; Nico W. van den Brink; Eric Vindimian

New concerns about biodiversity, ecosystem services and human health triggered several new regulations increasing the need for sound ecotoxicological risk assessment. The PEER network aims to share its view on the research issues that this challenges. PEER scientists call for an improved biologically relevant exposure assessment. They promote comprehensive effect assessment at several biological levels. Biological traits should be used for Environmental risk assessment (ERA) as promising tools to better understand relationships between structure and functioning of ecosystems. The use of modern high throughput methods could also enhance the amount of data for a better risk assessment. Improved models coping with multiple stressors or biological levels are necessary to answer for a more scientifically based risk assessment. Those methods must be embedded within life cycle analysis or economical models for efficient regulations. Joint research programmes involving humanities with ecological sciences should be developed for a sound risk management.


Environmental Toxicology | 2010

Lessons from a transplantation of zebra mussels into a small urban river: An integrated ecotoxicological assessment

A. Bourgeault; Catherine Gourlay-Francé; F. Vincent-Hubert; F. Palais; Alain Geffard; S. Biagianti-Risbourg; Sandrine Pain-Devin; M.-H. Tusseau-Vuillemin

It is often difficult to evaluate the level of contamination in small urban rivers because pollution is mainly diffuse, with low levels of numerous substances. The use of a coupled approach using both chemical and biological measurements may provide an integrated evaluation of the impact of micro‐pollution on the river. Zebra mussels were transplanted along a metal and organic pollution gradient in spring 2008. For two months, mussels and water samples were collected from two sites every two weeks and analyzed for metal and PAH content as well as water physicochemical parameters. Diffusive gradients in thin film (DGT) were also used to assess levels of labile metals. Exposure of mussels to contaminants and potential impact were evaluated using physiological indices and various biomarkers including condition index (CI), defense mechanisms (glutathione‐S‐transferase: GST), digestive enzymes (amylase and cellulase) and genotoxicity (micronucleus test: MN and comet assay: CA). For most contaminants, the water contamination was significantly higher downstream. Bioaccumulation in zebra mussels was related to water contamination in the framework of the biodynamic model, which allowed us to take into account the biological dilution that was caused by the growth of soft tissue downstream. Thus, metal influxes were on average two times higher downstream than upstream in particular for Zn, Cr, Cu and Cd. Significant differences in condition index were observed (final CI was 0.42 ± 0.03 downstream and 0.31 ± 0.03 upstream) reflecting a better food availability downstream. Moreover a significant decrease of GST activity and digestive enzymes activity in the cristalline style was observed downstream. Interpreting this decrease requires considering not only micro‐pollution but also the trophic status related to the waters physicochemistry. The MN test and the CA on gill cells highlighted genotoxicity in mussels transplanted downstream compared to upstream.


Environmental Toxicology and Chemistry | 2009

A model predicting waterborne cadmium bioaccumulation in Gammarus pulex: the effects of dissolved organic ligands, calcium, and temperature.

Bastien Pellet; Olivier Geffard; Céline Lacour; Thomas Kermoal; Catherine Gourlay-Francé; Marie-Hélène Tusseau-Vuillemin

Metal bioavailability depends on the presence of organic ligands in the water and on the concentrations of competitive cations. The present study aims at testing whether the diffusive gradient in thin films technique (DGT) could be used to take into account Cd speciation and its consequences on bioavailability in a bioaccumulation model and whether the influences of the Ca concentration and temperature also should be considered. Four kinetic experiments were conducted on Gammarus pulex: a calibration of Cd turnover rates and of the DGT lability in mineral water, a study of the influence f ethylenediaminetetraacetic acid (EDTA) and humic acids (HA) on uptake rates, and two experiments testing the influence of the Ca concentrations and temperature on Cd uptake clearance rates (ku). In mineral water, where Cd was considered fully labile, the ku was 0.46 L g⁻¹ d⁻¹, and the depuration rate was 0.032 d⁻¹. The initial Cd influxes were lowered significantly by additions of 10 μg L⁻¹ of EDTA or 10 mg L⁻¹ of HA in the water but not at 5 mg L⁻¹HA, even if DGT measurements proved that Cd formed Cd-HA complexes in that treatment. Increasing Ca concentrations lowered ku values, and a competitive inhibition model between Ca and Cd fitted the data. A 30% enhancement of k, values was observed when the temperature was increased by 8°C, which appeared comparatively as a weak effect. Thus, taking into account the metal speciation and the influence of the Ca concentration should improve Cd bioaccumulation modeling in amphipods. In freshwater, where metal bioavailability is reduced by the presence of dissolved organic matter, forecasting Cd waterborne uptake using the labile concentrations should allow robust comparisons between laboratory and field studies.


Ecotoxicology | 2012

One-year monitoring of core biomarker and digestive enzyme responses in transplanted zebra mussels (Dreissena polymorpha)

F. Palais; Odile Dedourge-Geffard; A. Beaudon; Sandrine Pain-Devin; J. Trapp; Olivier Geffard; P. Noury; Catherine Gourlay-Francé; Emmanuelle Uher; Catherine Mouneyrac; Sylvie Biagianti-Risbourg; Alain Geffard

A 12-month active biomonitoring study was performed in 2008–2009 on the Vesle river basin (Champagne-Ardenne, France) using the freshwater mussel Dreissena polymorpha as a sentinel species; allochthonous mussels originating from a reference site (Commercy) were exposed at four sites (Bouy, Sept-Saulx, Fismes, Ardre) within the Vesle river basin. Selected core biomarkers (acetylcholinesterase (AChE) activity, glutathione-S transferase (GST) activity, metallothionein concentration), along with digestive enzyme activities (amylase, endocellulase) and energy reserve concentrations (glycogen, lipids), were monitored throughout the study in exposed mussels. At the Fismes and Ardre sites (downstream basin), metallic and organic contamination levels were low but still high enough to elicit AChE and GST activity induction in exposed mussels (chemical stress); besides, chemical pollutants had no apparent deleterious effects on mussel condition. At the Bouy and Sept-Saulx sites (upstream basin), mussels obviously suffered from adverse food conditions which seriously impaired individual physiological state and survival (nutritional stress); food scarcity had however no apparent effects on core biomarker responses. Digestive enzyme activities responded to both chemical and nutritional stresses, the increase in energy outputs (general adaptation syndrome—downstream sites) or the decrease in energy inputs (food scarcity—upstream sites) leading to mid- or long-term induction of digestive carbohydrase activities in exposed mussels (energy optimizing strategy). Complex regulation patterns of these activities require nevertheless the use of a multi-marker approach to allow data interpretation. Besides, their sensitivity to natural confounding environmental factors remains to be precised.


Journal of Environmental Monitoring | 2011

Spatio-temporal variability of solid, total dissolved and labile metal: passive vs. discrete sampling evaluation in river metal monitoring

Cindy Rianti Priadi; Adeline Bourgeault; Sophie Ayrault; Catherine Gourlay-Francé; Marie-Hélène Tusseau-Vuillemin; Philippe Bonté; Jean-Marie Mouchel

In order to obtain representative dissolved and solid samples from the aquatic environment, a spectrum of sampling methods are available, each one with different advantages and drawbacks. This article evaluates the use of discrete sampling and time-integrated sampling in illustrating medium-term spatial and temporal variation. Discrete concentration index (CI) calculated as the ratio between dissolved and solid metal concentrations in grab samples are compared with time-integrated concentration index (CI) calculated from suspended particulate matter (SPM) collected in sediment traps and labile metals measured by the diffusive gel in thin films (DGT) method, collected once a month during one year at the Seine River, upstream and downstream of the Greater Paris Region. Discrete CI at Bougival was found to be significantly higher than at Triel for Co, Cu, Mn, Ni and Zn, while discrete metal partitioning at Marnay was found to be similar to Bougival and Triel. However, when using time-integrated CI, not only was Bougival CI significantly higher than Triel CI, CI at Marnay was also found to be significantly higher than CI at Triel which was not observed for discrete CI values. Since values are time-averaged, dramatic fluctuations were smoothed out and significant medium-term trends were enhanced. As a result, time-integrated concentration index (CI) was able to better illustrate urbanization impact between sites when compared to discrete CI. The impact of significant seasonal phenomenon such as winter flood, low flow and redox cycles was also, to a certain extent, visible in time-integrated CI values at the upstream site. The use of time-integrated concentration index may be useful for medium- to long-term metal studies in the aquatic environment.


Aquatic Toxicology | 2011

Waterborne nickel bioaccumulation in Gammarus pulex: comparison of mechanistic models and influence of water cationic composition.

Jérémie D. Lebrun; Marine Perret; Emmanuelle Uher; Marie-Hélène Tusseau-Vuillemin; Catherine Gourlay-Francé

The biodynamic and saturation models offer promising lines of enquiry to predict the bioaccumulation of metals by aquatic organisms. However, in order to construct these models, the accumulation strategies have to be defined for each metal/organism couple in controlled conditions. This study aims at modelling the waterborne bioaccumulation of Ni and the influence of the waters geochemical properties on this process in a crustacean that is widely distributed in Europe, Gammarus pulex. In the laboratory, G. pulex was exposed to several Ni concentrations (from 0.001 to 100 mg L(-1)) in aquatic microcosms. Our results show that G. pulex is very tolerant to Ni (LC50(48 h)=477 mg L(-1) Ni). Time course experiments enabled the construction of a biodynamic model by determining the uptake (k(u)) and elimination (k(e)) rate constants. When the exposure concentration exceeded 1 mg L(-1) Ni, the metal uptake reached a maximum due to a limited number of binding sites for Ni. Therefore, the organisms maximal capacity to accumulate the metal (B(max)) and the half-saturation constant (K) were determined to establish the saturation model. We showed that the two models are comparable for the lowest exposure concentrations (<1 mg L(-1) Ni), with k(u)/k(e)=B(max)/K. Then, the bioaccumulation of Ni was recorded in waters exhibiting various concentrations of three major ions (Na(+), Mg(2+) and Ca(2+)). Only Ca had an inhibitory effect on the Ni uptake. This study reports for the first time the bioaccumulation of Ni in G. pulex. Because of its high tolerance to Ni and its high capacity to accumulate this metal, this crustacean could be used as an indicator of Ni bioavailability in freshwaters.


Mutagenesis | 2012

Genotoxicity assessment and detoxification induction in Dreissena polymorpha exposed to benzo(a)pyrene

Amélie Châtel; Virginie Faucet-Marquis; Marine Perret; Catherine Gourlay-Francé; Emmanuelle Uher; Annie Pfohl-Leszkowicz; Françoise Vincent-Hubert

The use of DNA adduct analysis has previously focused on the use of marine organisms for biomonitoring, whereas similar investigations in freshwater organisms are sparse. In that context, we have investigated the relevance of DNA adducts as biomarkers of genotoxicity in the freshwater mussels Dreissena polymorpha. The objective of the present study is to determine the stability of DNA adducts induced by benzo[a]pyrene (B[a]P) in zebra mussels. Mussels were exposed to dissolved B[a]P (10-100 µg/l) for 4 days. Afterwards, mussels were kept in clean water for 28 days and DNA adduct levels were subsequently measured in two different organs, the digestive glands and the gills, using the (32)P-postlabelling technique. In parallel, the expression of genes involved in the detoxification system was assessed by qPCR (catalase, superoxide dismutase, glutathione S transferase, HSP70, aryl hydrocarbon receptor, P glycoprotein). We observed a higher level of DNA adducts in the digestive glands compared to the gills. Moreover, in gills, the level of DNA adduct was dependent on the B[a]P concentration. The levels of adducts tended to decrease in both organs after 28 days in clean water. In addition, an early induction of HSP70, PgP, AHR and SOD mRNA levels was noticed in the gills compared to the digestive glands. CAT and GST gene expression increased from 12h exposure in both organs. A higher gene expression level of those genes was observed in the gills, except for AHR and CAT genes. Data converge towards the fact that DNA adducts hence represent a very promising biomarker of B[a]P contamination and potentially of exposure to polycyclic aromatic hydrocarbons. In addition, for the first time in this study, B[a]P detoxification system was characterised in D. polymorpha.


Chemosphere | 2008

Polycyclic aromatic hydrocarbon sampling in wastewaters using semipermeable membrane devices: Accuracy of time-weighted average concentration estimations of truly dissolved compounds

Catherine Gourlay-Francé; Catherine Lorgeoux; Marie-Hélène Tusseau-Vuillemin

Semipermeable membrane devices (SPMDs) previously spiked with performance reference compounds were exposed in wastewater. After 6 days of exposure, 13 polycyclic aromatic hydrocarbons (PAHs) were quantified in SPMDs. Exchange rate constants and time-weighted average (TWA) concentrations of SPMD-available PAHs in water were calculated. The bias of using SPMDs to estimate an actual TWA concentration if the concentration in water fluctuates, as can be expected in wastewater, was studied with numerical simulations. The bias increased with the exchange rate constant. However, most exchange rate constants evaluated in SPMDs exposed in wastewater were small enough for SPMDs to estimate a TWA concentration of PAHs even when the water concentration varied. TWA-SPMD-available concentrations were always below total dissolved (operationally defined as 0.7 microm) concentrations, indicating that part of the dissolved PAHs was not available for sampling. In situ partitioning coefficients K(DOC) were computed and found to be slightly higher than data from the literature. This confirms that only truly dissolved PAHs should be sampled by SPMDs in wastewater.


Analytical Chemistry | 2012

Impact of biofouling on diffusive gradient in thin film measurements in water.

Emmanuelle Uher; Hao Zhang; Sarah Santos; Marie-Hélène Tusseau-Vuillemin; Catherine Gourlay-Francé

The technique of diffusive gradient in thin film (DGT) is commonly used to assess metal contamination in natural waters. In this paper, we assess the effect of biofouling on DGT measured labile concentrations in water and investigate whether an additional nuclepore polycarbonate membrane on the surface of DGT devices can limit biofilm growth. Simultaneous field deployments of DGT equipped with and without the additional membrane in a canal receiving wastewater were compared. The effect of the biofilm was also assessed in controlled laboratory experiments, completed by the experimental determination of several metals diffusion coefficients in the hydrogel and membrane systems. The biofilms effect was problematic only from the 10th day of accumulation. Accumulation of some elements is highly biased by the presence of a thick biofilm (Zn, Ni, Cd). The polycarbonate membrane improved the quantification of Cd and Ni but adversely affects the quantification of Cr and Co. A kinetic model is proposed to explain the biofilm role on the DGT measurement. Depending on the metals of interest, it is possible to limit bias due to biofilms by using an additional polycarbonate membrane.

Collaboration


Dive into the Catherine Gourlay-Francé's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain Geffard

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Palais

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar

Odile Dedourge-Geffard

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sophie Ayrault

Université Paris-Saclay

View shared research outputs
Researchain Logo
Decentralizing Knowledge