Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine H. Graham is active.

Publication


Featured researches published by Catherine H. Graham.


Ecological Applications | 2009

Sample selection bias and presence‐only distribution models: implications for background and pseudo‐absence data

Steven J. Phillips; Miroslav Dudík; Jane Elith; Catherine H. Graham; Anthony Lehmann; John R. Leathwick; Simon Ferrier

Most methods for modeling species distributions from occurrence records require additional data representing the range of environmental conditions in the modeled region. These data, called background or pseudo-absence data, are usually drawn at random from the entire region, whereas occurrence collection is often spatially biased toward easily accessed areas. Since the spatial bias generally results in environmental bias, the difference between occurrence collection and background sampling may lead to inaccurate models. To correct the estimation, we propose choosing background data with the same bias as occurrence data. We investigate theoretical and practical implications of this approach. Accurate information about spatial bias is usually lacking, so explicit biased sampling of background sites may not be possible. However, it is likely that an entire target group of species observed by similar methods will share similar bias. We therefore explore the use of all occurrences within a target group as biased background data. We compare model performance using target-group background and randomly sampled background on a comprehensive collection of data for 226 species from diverse regions of the world. We find that target-group background improves average performance for all the modeling methods we consider, with the choice of background data having as large an effect on predictive performance as the choice of modeling method. The performance improvement due to target-group background is greatest when there is strong bias in the target-group presence records. Our approach applies to regression-based modeling methods that have been adapted for use with occurrence data, such as generalized linear or additive models and boosted regression trees, and to Maxent, a probability density estimation method. We argue that increased awareness of the implications of spatial bias in surveys, and possible modeling remedies, will substantially improve predictions of species distributions.


Evolution | 2004

INTEGRATING PHYLOGENETICS AND ENVIRONMENTAL NICHE MODELS TO EXPLORE SPECIATION MECHANISMS IN DENDROBATID FROGS

Catherine H. Graham; Santiago R. Ron; Juan C. Santos; Christopher J. Schneider; Craig Moritz

Abstract We developed an approach that combines distribution data, environmental geographic information system layers, environmental niche models, and phylogenetic information to investigate speciation processes. We used Ecuadorian frogs of the family Dendrobatidae to illustrate our methodology. For dendrobatids there are several cases for which there is significant environmental divergence for allopatric and parapatric lineages. The consistent pattern that many related taxa or nodes exist in distinct environmental space reinforces Lynch and Duellmans hypothesis that differential selection likely played an important role in species differentiation of frogs in the Andes. There is also some evidence that the Río Esmeraldas basin is a geographic barrier to species distributed in low to middle elevations on the western side of the Andes. Another useful aspect of this approach is that it can point to common environmental parameters that correlate with speciation. For dendrobatids, sister clades generally segregate along temperature/elevational and/or seasonality axes. The joint analysis of environmental and geographic data for this group of dendrobatid frogs has identified potentially important speciation mechanisms and specific sister lineages that warrant intensive study to test hypotheses generated in this investigation. Further, the method outlined in this paper will be increasingly useful as knowledge of distribution and phylogeny of tropical species increases.


Science | 2013

An Update of Wallace’s Zoogeographic Regions of the World

Ben G. Holt; Jean-Philippe Lessard; Michael K. Borregaard; Susanne A. Fritz; Miguel B. Araújo; Dimitar Dimitrov; Pierre-Henri Fabre; Catherine H. Graham; Gary R. Graves; Knud A. Jønsson; David Nogués-Bravo; Zhiheng Wang; Robert J. Whittaker; Jon Fjeldså; Carsten Rahbek

Next-Generation Biogeography In 1876, Alfred Russel Wallace mapped the zoogeographical regions of the world, based on the distributions and taxonomic relationships of broadly defined mammalian families. Wallaces classification of zoogeographical regions became a cornerstone of modern biogeography and a reference for a wide variety of biological disciplines, including global biodiversity and conservation sciences. Holt et al. (p. 74, published online 20 December) present a next-generation map of wallacean zoogeographic regions, incorporating phylogenetic data on >20,000 vertebrate species to discern and characterize their natural biogeographic patterns. Mapping the geographic distribution and phylogenetic relationships of 21,037 vertebrate species yields 11 realms. Modern attempts to produce biogeographic maps focus on the distribution of species, and the maps are typically drawn without phylogenetic considerations. Here, we generate a global map of zoogeographic regions by combining data on the distributions and phylogenetic relationships of 21,037 species of amphibians, birds, and mammals. We identify 20 distinct zoogeographic regions, which are grouped into 11 larger realms. We document the lack of support for several regions previously defined based on distributional data and show that spatial turnover in the phylogenetic composition of vertebrate assemblages is higher in the Southern than in the Northern Hemisphere. We further show that the integration of phylogenetic information provides valuable insight on historical relationships among regions, permitting the identification of evolutionarily unique regions of the world.


Ecology Letters | 2008

Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time

Catherine H. Graham; Paul V. A. Fine

A key challenge in ecological research is to integrate data from different scales to evaluate the ecological and evolutionary mechanisms that influence current patterns of biological diversity. We build on recent attempts to incorporate phylogenetic information into traditional diversity analyses and on existing research on beta diversity and phylogenetic community ecology. Phylogenetic beta diversity (phylobetadiversity) measures the phylogenetic distance among communities and as such allows us to connect local processes, such as biotic interactions and environmental filtering, with more regional processes including trait evolution and speciation. When combined with traditional measures of beta diversity, environmental gradient analyses or ecological niche modelling, phylobetadiversity can provide significant and novel insights into the mechanisms underlying current patterns of biological diversity.


Trends in Ecology and Evolution | 2008

Integrating GIS-based environmental data into evolutionary biology

Kenneth H. Kozak; Catherine H. Graham; John J. Wiens

Many evolutionary processes are influenced by environmental variation over space and time, including genetic divergence among populations, speciation and evolutionary change in morphology, physiology and behaviour. Yet, evolutionary biologists have generally not taken advantage of the extensive environmental data available from geographic information systems (GIS). For example, studies of phylogeography, speciation and character evolution often ignore or use only crude proxies for environmental variation (e.g. latitude and distance between populations). Here, we describe how the integration of GIS-based environmental data, along with new spatial tools, can transform evolutionary studies and reveal new insights into the ecological causes of evolutionary patterns.


The American Naturalist | 2006

Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity.

John J. Wiens; Catherine H. Graham; Daniel S. Moen; Sarah A. Smith; Tod W. Reeder

Why are there more species in the tropics than in temperate regions? In recent years, this long‐standing question has been addressed primarily by seeking environmental correlates of diversity. But to understand the ultimate causes of diversity patterns, we must also examine the evolutionary and biogeographic processes that directly change species numbers (i.e., speciation, extinction, and dispersal). With this perspective, we dissect the latitudinal diversity gradient in hylid frogs. We reconstruct a phylogeny for 124 hylid species, estimate divergence times and diversification rates for major clades, reconstruct biogeographic changes, and use ecological niche modeling to identify climatic variables that potentially limit dispersal. We find that hylids originated in tropical South America and spread to temperate regions only recently (leaving limited time for speciation). There is a strong relationship between the species richness of each region and when that region was colonized but not between the latitudinal positions of clades and their rates of diversification. Temperature seasonality seemingly limits dispersal of many tropical clades into temperate regions and shows significant phylogenetic conservatism. Overall, our study illustrates how two general principles (niche conservatism and the time‐for‐speciation effect) may help explain the latitudinal diversity gradient as well as many other diversity patterns across taxa and regions.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Phylogenetic structure in tropical hummingbird communities

Catherine H. Graham; Juan L. Parra; Carsten Rahbek; Jimmy A. McGuire

How biotic interactions, current and historical environment, and biogeographic barriers determine community structure is a fundamental question in ecology and evolution, especially in diverse tropical regions. To evaluate patterns of local and regional diversity, we quantified the phylogenetic composition of 189 hummingbird communities in Ecuador. We assessed how species and phylogenetic composition changed along environmental gradients and across biogeographic barriers. We show that humid, low-elevation communities are phylogenetically overdispersed (coexistence of distant relatives), a pattern that is consistent with the idea that competition influences the local composition of hummingbirds. At higher elevations communities are phylogenetically clustered (coexistence of close relatives), consistent with the expectation of environmental filtering, which may result from the challenge of sustaining an expensive means of locomotion at high elevations. We found that communities in the lowlands on opposite sides of the Andes tend to be phylogenetically similar despite their large differences in species composition, a pattern implicating the Andes as an important dispersal barrier. In contrast, along the steep environmental gradient between the lowlands and the Andes we found evidence that species turnover is comprised of relatively distantly related species. The integration of local and regional patterns of diversity across environmental gradients and biogeographic barriers provides insight into the potential underlying mechanisms that have shaped community composition and phylogenetic diversity in one of the most species-rich, complex regions of the world.


The American Naturalist | 2006

Phylogeographic lineages and species comparisons in conservation analyses: a case study of california herpetofauna.

Leslie J. Rissler; Robert J. Hijmans; Catherine H. Graham; Craig Moritz; David B. Wake

Many phylogeographic studies have revealed strongly diverged lineages within species that are masked by a lack of congruent morphological differentiation. To assess the extent to which the genetic component of diversity affects conservation assessments, we compared spatial patterns of endemism and conservation value for 22 species of Californian amphibians and reptiles with the 75 phylogeographic lineages that they contain. We used bioclimatic distribution modeling with environmental layers to generate 5‐km spatial‐resolution maps of predicted distribution for each species and lineage. We found concentrations of lineage breaks across the Central Valley, San Francisco Bay, the Sierra Nevada, and the Tehachapi and Trinity ranges. Subdivision of the ranges of species into phylogeographic units revealed novel areas of endemism. Several areas of very high conservation value for lineages were not evident in the species‐level analysis. These observations illustrate the importance of considering multiple levels of biodiversity in conservation assessments.


Proceedings of the Royal Society of London Series B: Biological Sciences | 2009

Identification and dynamics of a cryptic suture zone in tropical rainforest

Craig Moritz; Jacob B. MacKenzie; Ben L. Phillips; Maria A. Tonione; N. Silva; Jeremy VanDerWal; Stephen E. Williams; Catherine H. Graham

Suture zones, shared regions of secondary contact between long-isolated lineages, are natural laboratories for studying divergence and speciation. For tropical rainforest, the existence of suture zones and their significance for speciation has been controversial. Using comparative phylogeographic evidence, we locate a morphologically cryptic suture zone in the Australian Wet Tropics rainforest. Fourteen out of 18 contacts involve morphologically cryptic phylogeographic lineages, with mtDNA sequence divergences ranging from 2 to 15 per cent. Contact zones are significantly clustered in a suture zone located between two major Quaternary refugia. Within this area, there is a trend for secondary contacts to occur in regions with low environmental suitability relative to both adjacent refugia and, by inference, the parental lineages. The extent and form of reproductive isolation among interacting lineages varies across species, ranging from random admixture to speciation, in one case via reinforcement. Comparative phylogeographic studies, combined with environmental analysis at a fine-scale and across varying climates, can generate new insights into suture zone formation and to diversification processes in species-rich tropical rainforests. As arenas for evolutionary experimentation, suture zones merit special attention for conservation.


Proceedings of the Royal Society of London Series B: Biological Sciences | 2012

Latitude, elevational climatic zonation and speciation in New World vertebrates

Carlos Daniel Cadena; Kenneth H. Kozak; Juan Pablo Gomez; Juan L. Parra; Christy M. McCain; Rauri C. K. Bowie; Ana Carolina Carnaval; Craig Moritz; Carsten Rahbek; Trina E. Roberts; Nathan J. Sanders; Christopher J. Schneider; Jeremy VanDerWal; Kelly R. Zamudio; Catherine H. Graham

Many biodiversity hotspots are located in montane regions, especially in the tropics. A possible explanation for this pattern is that the narrow thermal tolerances of tropical species and greater climatic stratification of tropical mountains create more opportunities for climate-associated parapatric or allopatric speciation in the tropics relative to the temperate zone. However, it is unclear whether a general relationship exists among latitude, climatic zonation and the ecology of speciation. Recent taxon-specific studies obtained different results regarding the role of climate in speciation in tropical versus temperate areas. Here, we quantify overlap in the climatic distributions of 93 pairs of sister species of mammals, birds, amphibians and reptiles restricted to either the New World tropics or to the Northern temperate zone. We show that elevational ranges of tropical- and temperate-zone species do not differ from one another, yet the temperature range experienced by species in the temperate zone is greater than for those in the tropics. Moreover, tropical sister species tend to exhibit greater similarity in their climatic distributions than temperate sister species. This pattern suggests that evolutionary conservatism in the thermal niches of tropical taxa, coupled with the greater thermal zonation of tropical mountains, may result in increased opportunities for allopatric isolation, speciation and the accumulation of species in tropical montane regions. Our study exemplifies the power of combining phylogenetic and spatial datasets of global climatic variation to explore evolutionary (rather than purely ecological) explanations for the high biodiversity of tropical montane regions.

Collaboration


Dive into the Catherine H. Graham's collaboration.

Top Co-Authors

Avatar

Juan L. Parra

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig Moritz

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Gabriel C. Costa

Auburn University at Montgomery

View shared research outputs
Top Co-Authors

Avatar

Niklaus E. Zimmermann

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge