Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine Linard is active.

Publication


Featured researches published by Catherine Linard.


PLOS ONE | 2012

Population Distribution, Settlement Patterns and Accessibility across Africa in 2010

Catherine Linard; Marius Gilbert; Robert W. Snow; Abdisalan M. Noor; Andrew J. Tatem

The spatial distribution of populations and settlements across a country and their interconnectivity and accessibility from urban areas are important for delivering healthcare, distributing resources and economic development. However, existing spatially explicit population data across Africa are generally based on outdated, low resolution input demographic data, and provide insufficient detail to quantify rural settlement patterns and, thus, accurately measure population concentration and accessibility. Here we outline approaches to developing a new high resolution population distribution dataset for Africa and analyse rural accessibility to population centers. Contemporary population count data were combined with detailed satellite-derived settlement extents to map population distributions across Africa at a finer spatial resolution than ever before. Substantial heterogeneity in settlement patterns, population concentration and spatial accessibility to major population centres is exhibited across the continent. In Africa, 90% of the population is concentrated in less than 21% of the land surface and the average per-person travel time to settlements of more than 50,000 inhabitants is around 3.5 hours, with Central and East Africa displaying the longest average travel times. The analyses highlight large inequities in access, the isolation of many rural populations and the challenges that exist between countries and regions in providing access to services. The datasets presented are freely available as part of the AfriPop project, providing an evidence base for guiding strategic decisions.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Dynamic population mapping using mobile phone data

Pierre Deville; Catherine Linard; Samuel Martin; Marius Gilbert; Forrest R. Stevens; Andrea E. Gaughan; Vincent D. Blondel; Andrew J. Tatem

Significance Knowing where people are is critical for accurate impact assessments and intervention planning, particularly those focused on population health, food security, climate change, conflicts, and natural disasters. This study demonstrates how data collected by mobile phone network operators can cost-effectively provide accurate and detailed maps of population distribution over national scales and any time period while guaranteeing phone users’ privacy. The methods outlined may be applied to estimate human population densities in low-income countries where data on population distributions may be scarce, outdated, and unreliable, or to estimate temporal variations in population density. The work highlights how facilitating access to anonymized mobile phone data might enable fast and cheap production of population maps in emergency and data-scarce situations. During the past few decades, technologies such as remote sensing, geographical information systems, and global positioning systems have transformed the way the distribution of human population is studied and modeled in space and time. However, the mapping of populations remains constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess and limit the application of human population maps in situations in which timely information is required, such as disasters, conflicts, or epidemics. Mobile phones (MPs) now have an extremely high penetration rate across the globe, and analyzing the spatiotemporal distribution of MP calls geolocated to the tower level may overcome many limitations of census-based approaches, provided that the use of MP data is properly assessed and calibrated. Using datasets of more than 1 billion MP call records from Portugal and France, we show how spatially and temporarily explicit estimations of population densities can be produced at national scales, and how these estimates compare with outputs produced using alternative human population mapping methods. We also demonstrate how maps of human population changes can be produced over multiple timescales while preserving the anonymity of MP users. With similar data being collected every day by MP network providers across the world, the prospect of being able to map contemporary and changing human population distributions over relatively short intervals exists, paving the way for new applications and a near real-time understanding of patterns and processes in human geography.


PLOS ONE | 2015

Disaggregating Census Data for Population Mapping Using Random Forests with Remotely-Sensed and Ancillary Data

Forrest R. Stevens; Andrea E. Gaughan; Catherine Linard; Andrew J. Tatem

High resolution, contemporary data on human population distributions are vital for measuring impacts of population growth, monitoring human-environment interactions and for planning and policy development. Many methods are used to disaggregate census data and predict population densities for finer scale, gridded population data sets. We present a new semi-automated dasymetric modeling approach that incorporates detailed census and ancillary data in a flexible, “Random Forest” estimation technique. We outline the combination of widely available, remotely-sensed and geospatial data that contribute to the modeled dasymetric weights and then use the Random Forest model to generate a gridded prediction of population density at ~100 m spatial resolution. This prediction layer is then used as the weighting surface to perform dasymetric redistribution of the census counts at a country level. As a case study we compare the new algorithm and its products for three countries (Vietnam, Cambodia, and Kenya) with other common gridded population data production methodologies. We discuss the advantages of the new method and increases over the accuracy and flexibility of those previous approaches. Finally, we outline how this algorithm will be extended to provide freely-available gridded population data sets for Africa, Asia and Latin America.


International Journal of Health Geographics | 2007

Determinants of the geographic distribution of Puumala virus and Lyme borreliosis infections in Belgium

Catherine Linard; Pénélope Lamarque; Paul Heyman; Geneviève Ducoffre; Victor Luyasu; Katrien Tersago; Sophie O. Vanwambeke; Eric F. Lambin

BackgroundVector-borne and zoonotic diseases generally display clear spatial patterns due to different space-dependent factors. Land cover and land use influence disease transmission by controlling both the spatial distribution of vectors or hosts, and the probability of contact with susceptible human populations. The objective of this study was to combine environmental and socio-economic factors to explain the spatial distribution of two emerging human diseases in Belgium, Puumala virus (PUUV) and Lyme borreliosis. Municipalities were taken as units of analysis.ResultsNegative binomial regressions including a correction for spatial endogeneity show that the spatial distribution of PUUV and Lyme borreliosis infections are associated with a combination of factors linked to the vector and host populations, to human behaviours, and to landscape attributes. Both diseases are associated with the presence of forests, which are the preferred habitat for vector or host populations. The PUUV infection risk is higher in remote forest areas, where the level of urbanisation is low, and among low-income populations. The Lyme borreliosis transmission risk is higher in mixed landscapes with forests and spatially dispersed houses, mostly in wealthy peri-urban areas. The spatial dependence resulting from a combination of endogenous and exogenous processes could be accounted for in the model on PUUV but not for Lyme borreliosis.ConclusionA large part of the spatial variation in disease risk can be explained by environmental and socio-economic factors. The two diseases not only are most prevalent in different regions but also affect different groups of people. Combining these two criteria may increase the efficiency of information campaigns through appropriate targeting.


PLOS ONE | 2013

High Resolution Population Distribution Maps for Southeast Asia in 2010 and 2015

Andrea E. Gaughan; Forrest R. Stevens; Catherine Linard; Peng Jia; Andrew J. Tatem

Spatially accurate, contemporary data on human population distributions are vitally important to many applied and theoretical researchers. The Southeast Asia region has undergone rapid urbanization and population growth over the past decade, yet existing spatial population distribution datasets covering the region are based principally on population count data from censuses circa 2000, with often insufficient spatial resolution or input data to map settlements precisely. Here we outline approaches to construct a database of GIS-linked circa 2010 census data and methods used to construct fine-scale (∼100 meters spatial resolution) population distribution datasets for each country in the Southeast Asia region. Landsat-derived settlement maps and land cover information were combined with ancillary datasets on infrastructure to model population distributions for 2010 and 2015. These products were compared with those from two other methods used to construct commonly used global population datasets. Results indicate mapping accuracies are consistently higher when incorporating land cover and settlement information into the AsiaPop modelling process. Using existing data, it is possible to produce detailed, contemporary and easily updatable population distribution datasets for Southeast Asia. The 2010 and 2015 datasets produced are freely available as a product of the AsiaPop Project and can be downloaded from: www.asiapop.org.


Nature Communications | 2014

Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia

Marius Gilbert; Nick Golding; Hang Zhou; G. R. William Wint; Timothy P. Robinson; Andrew J. Tatem; Shengjie Lai; Sheng Zhou; Hui-Hui Jiang; Danhuai Guo; Zhi Huang; Jane P. Messina; Xiangming Xiao; Catherine Linard; Thomas P. Van Boeckel; Samir Bhatt; Peter W. Gething; Jeremy Farrar; Simon I. Hay; Hongjie Yu

Two epidemic waves of an avian influenza A (H7N9) virus have so far affected China. Most human cases have been attributable to poultry exposure at live-poultry markets, where most positive isolates were sampled. The potential geographic extent of potential re-emerging epidemics is unknown, as are the factors associated with it. Using newly assembled data sets of the locations of 8,943 live-poultry markets in China and maps of environmental correlates, we develop a statistical model that accurately predicts the risk of H7N9 market infection across Asia. Local density of live-poultry markets is the most important predictor of H7N9 infection risk in markets, underscoring their key role in the spatial epidemiology of H7N9, alongside other poultry, land cover and anthropogenic predictor variables. Identification of areas in Asia with high suitability for H7N9 infection enhances our capacity to target biosurveillance and control, helping to restrict the spread of this important disease.


Vector-borne and Zoonotic Diseases | 2008

Population, environmental, and community effects on local bank vole (Myodes glareolus) Puumala virus infection in an area with low human incidence.

Katrien Tersago; A Schreurs; Catherine Linard; Ron Verhagen; S Van Dongen; Herwig Leirs

In this study, the distribution of Puumala hantavirus (PUUV) infection in local bank vole Myodes glareolus populations in an area with low human PUUV infection (nephropathia epidemica [NE]) incidence in northern Belgium was monitored for 2 consecutive years. Bank voles were trapped in preferred habitat and tested for anti-PUUV IgG. Infection data were related to individual bank vole features, population demography, and environmental variables. Rare occurrence of PUUV infection was found and PUUV prevalence was low compared with data from the high NE incidence area in southern Belgium. Small-scale climatic differences seemed to play a role in PUUV occurrence, vegetation index and deciduous forest patch size both influenced PUUV prevalence and number of infected voles in a positive way. The data suggested a density threshold in vole populations below which PUUV infection does not occur. This threshold may vary between years, but the abundance of bank voles does not seem to affect the degree of PUUV seroprevalence further. We found indications for a dilution effect on PUUV prevalence, dependent on the relative proportion of nonhost wood mice Apodemus sylvaticus in a study site. In conclusion, we regard the combination of a dilution effect, a possible threshold density that depends on local conditions, and a higher fragmentation of suitable bank vole habitat in our study area as plausible explanations for the sparse occurrence of PUUV infection and low prevalence detected. Thus, beside human activity patterns, local environmental conditions and rodent community structure are also likely to play a role in determining PUUV infection risk for humans.


International Journal of Health Geographics | 2007

Environmental conditions and Puumala virus transmission in Belgium.

Catherine Linard; Katrien Tersago; Herwig Leirs; Eric F. Lambin

BackgroundNon-vector-borne zoonoses such as Puumala hantavirus (PUUV) can be transmitted directly, by physical contact between infected and susceptible hosts, or indirectly, with the environment as an intermediate. The objective of this study is to better understand the causal link between environmental features and PUUV prevalence in bank vole population in Belgium, and hence with transmission risk to humans. Our hypothesis was that environmental conditions controlling the direct and indirect transmission paths differ, such that the risk of transmission to humans is not only determined by host abundance. We explored the relationship between, on one hand, environmental variables and, on the other hand, host abundance, PUUV prevalence in the host, and human cases of nephropathia epidemica (NE). Statistical analyses were carried out on 17 field sites situated in Belgian broadleaf forests.ResultsLinear regressions showed that landscape attributes, particularly landscape configuration, influence the abundance of hosts in broadleaf forests. Based on logistic regressions, we show that PUUV prevalence among bank voles is more linked to variables favouring the survival of the virus in the environment, and thus the indirect transmission: low winter temperatures are strongly linked to prevalence among bank voles, and high soil moisture is linked to the number of NE cases among humans. The transmission risk to humans therefore depends on the efficiency of the indirect transmission path. Human risk behaviours, such as the propensity for people to go in forest areas that best support the virus, also influence the number of human cases.ConclusionThe transmission risk to humans of non-vector-borne zoonoses such as PUUV depends on a combination of various environmental factors. To understand the complex causal pathways between the environment and disease risk, one should distinguish between environmental factors related to the abundance of hosts such as land-surface attributes, landscape configuration, and climate – i.e., host ecology, – and environmental factors related to PUUV prevalence, mainly winter temperatures and soil moisture – i.e., virus ecology. Beyond a threshold abundance of hosts, environmental factors favouring the indirect transmission path (soil and climate) can better predict the number of NE cases among humans than factors influencing the abundance of hosts.


GeoJournal | 2011

Assessing the use of global land cover data for guiding large area population distribution modelling.

Catherine Linard; Marius Gilbert; Andrew J. Tatem

Gridded population distribution data are finding increasing use in a wide range of fields, including resource allocation, disease burden estimation and climate change impact assessment. Land cover information can be used in combination with detailed settlement extents to redistribute aggregated census counts to improve the accuracy of national-scale gridded population data. In East Africa, such analyses have been done using regional land cover data, thus restricting application of the approach to this region. If gridded population data are to be improved across Africa, an alternative, consistent and comparable source of land cover data is required. Here these analyses were repeated for Kenya using four continent-wide land cover datasets combined with detailed settlement extents and accuracies were assessed against detailed census data. The aim was to identify the large area land cover dataset that, combined with detailed settlement extents, produce the most accurate population distribution data. The effectiveness of the population distribution modelling procedures in the absence of high resolution census data was evaluated, as was the extrapolation ability of population densities between different regions. Results showed that the use of the GlobCover dataset refined with detailed settlement extents provided significantly more accurate gridded population data compared to the use of refined AVHRR-derived, MODIS-derived and GLC2000 land cover datasets. This study supports the hypothesis that land cover information is important for improving population distribution model accuracies, particularly in countries where only coarse resolution census data are available. Obtaining high resolution census data must however remain the priority. With its higher spatial resolution and its more recent data acquisition, the GlobCover dataset was found as the most valuable resource to use in combination with detailed settlement extents for the production of gridded population datasets across large areas.


Population Health Metrics | 2012

Mapping populations at risk: improving spatial demographic data for infectious disease modeling and metric derivation.

Andrew J. Tatem; Susana B. Adamo; Nita Bharti; Clara R. Burgert; Marcia C. Castro; Audrey M. Dorélien; Gunter Fink; Catherine Linard; Mendelsohn John; Livia Montana; Mark R. Montgomery; Andrew Nelson; Abdisalan M. Noor; Deepa Pindolia; Gregory G. Yetman; Deborah Balk

The use of Global Positioning Systems (GPS) and Geographical Information Systems (GIS) in disease surveys and reporting is becoming increasingly routine, enabling a better understanding of spatial epidemiology and the improvement of surveillance and control strategies. In turn, the greater availability of spatially referenced epidemiological data is driving the rapid expansion of disease mapping and spatial modeling methods, which are becoming increasingly detailed and sophisticated, with rigorous handling of uncertainties. This expansion has, however, not been matched by advancements in the development of spatial datasets of human population distribution that accompany disease maps or spatial models.Where risks are heterogeneous across population groups or space or dependent on transmission between individuals, spatial data on human population distributions and demographic structures are required to estimate infectious disease risks, burdens, and dynamics. The disease impact in terms of morbidity, mortality, and speed of spread varies substantially with demographic profiles, so that identifying the most exposed or affected populations becomes a key aspect of planning and targeting interventions. Subnational breakdowns of population counts by age and sex are routinely collected during national censuses and maintained in finer detail within microcensus data. Moreover, demographic and health surveys continue to collect representative and contemporary samples from clusters of communities in low-income countries where census data may be less detailed and not collected regularly. Together, these freely available datasets form a rich resource for quantifying and understanding the spatial variations in the sizes and distributions of those most at risk of disease in low income regions, yet at present, they remain unconnected data scattered across national statistical offices and websites.In this paper we discuss the deficiencies of existing spatial population datasets and their limitations on epidemiological analyses. We review sources of detailed, contemporary, freely available and relevant spatial demographic data focusing on low income regions where such data are often sparse and highlight the value of incorporating these through a set of examples of their application in disease studies. Moreover, the importance of acknowledging, measuring, and accounting for uncertainty in spatial demographic datasets is outlined. Finally, a strategy for building an open-access database of spatial demographic data that is tailored to epidemiological applications is put forward.

Collaboration


Dive into the Catherine Linard's collaboration.

Top Co-Authors

Avatar

Marius Gilbert

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Tatem

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abdisalan M. Noor

Kenya Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sophie O. Vanwambeke

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yann Forget

Université libre de Bruxelles

View shared research outputs
Researchain Logo
Decentralizing Knowledge