Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine M. Logue is active.

Publication


Featured researches published by Catherine M. Logue.


Applied and Environmental Microbiology | 2007

Plasmid replicon typing of commensal and pathogenic Escherichia coli isolates.

Timothy J. Johnson; Yvonne Wannemuehler; Sara J. Johnson; Catherine M. Logue; David G. White; Curt Doetkott; Lisa K. Nolan

ABSTRACT Despite the critical role of plasmids in horizontal gene transfer, few studies have characterized plasmid relatedness among different bacterial populations. Recently, a multiplex PCR replicon typing protocol was developed for classification of plasmids occurring in members of the Enterobacteriaceae. Here, a simplified version of this replicon typing procedure which requires only three multiplex panels to identify 18 plasmid replicons is described. This method was used to screen 1,015 Escherichia coli isolates of avian, human, and poultry meat origin for plasmid replicon types. Additionally, the isolates were assessed for their content of several colicin-associated genes. Overall, a high degree of plasmid variability was observed, with 221 different profiles occurring among the 1,015 isolates examined. IncFIB plasmids were the most common type identified, regardless of the source type of E. coli. IncFIB plasmids occurred significantly more often in avian pathogenic E. coli (APEC) and retail poultry E. coli (RPEC) than in uropathogenic E. coli (UPEC) and avian and human fecal commensal E. coli isolates (AFEC and HFEC, respectively). APEC and RPEC were also significantly more likely than UPEC, HFEC, and AFEC to possess the colicin-associated genes cvaC, cbi, and/or cma in conjunction with one or more plasmid replicons. The results suggest that E. coli isolates contaminating retail poultry are notably similar to APEC with regard to plasmid profiles, with both generally containing multiple plasmid replicon types in conjunction with colicin-related genes. In contrast, UPEC and human and avian commensal E. coli isolates generally lack the plasmid replicons and colicin-related genes seen in APEC and RPEC, suggesting limited dissemination of such plasmids among these bacterial populations.


Infection and Immunity | 2006

Acquisition of Avian Pathogenic Escherichia coli Plasmids by a Commensal E. coli Isolate Enhances Its Abilities To Kill Chicken Embryos, Grow in Human Urine, and Colonize the Murine Kidney

Jerod A. Skyberg; Timothy J. Johnson; James R. Johnson; Connie Clabots; Catherine M. Logue; Lisa K. Nolan

ABSTRACT We have found an avian pathogenic Escherichia coli (APEC) plasmid, pAPEC-O2-ColV, which contains many of the genes associated with APEC virulence and also shows similarity in content to a plasmid and pathogenicity island of human uropathogenic E. coli (UPEC). To test the possible role of this plasmid in virulence, it was transferred by conjugation along with a large R plasmid, pAPEC-O2-R, into a commensal avian E. coli strain. The transconjugant was compared to recipient strain NC, UPEC strain HE300, and donor strain APEC O2 using various assays, including lethality for chicken embryos, growth in human urine, and ability to cause urinary tract infection in mice. The transconjugant killed significantly more chicken embryos than did the recipient. In human urine, APEC O2 grew at a rate equivalent to that of UPEC strain HE300, and the transconjugant showed significantly increased growth compared to the recipient. The transconjugant also significantly outcompeted the recipient in colonization of the murine kidney. These findings suggest that APEC plasmids, such as pAPEC-O2-ColV, contribute to the pathogenesis of avian colibacillosis. Moreover, since avian E. coli and their plasmids may be transmitted to humans, evaluation of APEC plasmids as possible reservoirs of urovirulence genes for human UPEC may be warranted.


Journal of Clinical Microbiology | 2005

Multilocus Sequence Typing Lacks the Discriminatory Ability of Pulsed-Field Gel Electrophoresis for Typing Salmonella enterica Serovar Typhimurium

Mohamed K. Fakhr; Lisa K. Nolan; Catherine M. Logue

ABSTRACT Nontyphoidal salmonellae are among the leading causes of food-borne disease in the United States. Because of the importance of Salmonella enterica in food-borne disease, numerous typing methodologies have been developed. Among the several molecular typing methods, pulsed-field gel electrophoresis (PFGE) is currently considered the “gold standard” technique in typing Salmonella. The aim of this study was to compare the discriminatory power of PFGE to multilocus sequence typing (MLST) in typing Salmonella enterica serovar Typhimurium clinical isolates. A total of 85 Salmonella Typhimurium clinical isolates from cattle were used in this study. PFGE using XbaI was performed on the 85 isolates by the Centers for Disease Control and Prevention method, and data were analyzed using the BioNumerics software package. Fifty PFGE profiles were observed among the isolates, and these grouped into three major clusters. For the MLST analysis, the manB, pduF, glnA, and spaM genes were amplified by PCR from the same 85 isolates. DNA sequencing of these four genes, manB, pduF, glnA, and spaM, showed no genetic diversity among the isolates tested, with a 100% identity in nucleotide sequence. Moreover, the DNA sequences of the aforementioned genes showed 100% identity to the sequence reported in GenBank for the S. enterica serovar Typhimurium LT2 strain. Therefore, MLST, using these genes, lacks the discriminatory power of PFGE for typing Salmonella enterica serovar Typhimurium.


Infection and Immunity | 2010

Avian-Pathogenic Escherichia coli Strains Are Similar to Neonatal Meningitis E. coli Strains and Are Able To Cause Meningitis in the Rat Model of Human Disease

Kelly A. Tivendale; Catherine M. Logue; Subhashinie Kariyawasam; Dianna M. Jordan; Ashraf Hussein; Ganwu Li; Yvonne Wannemuehler; Lisa K. Nolan

ABSTRACT Escherichia coli strains causing avian colibacillosis and human neonatal meningitis, urinary tract infections, and septicemia are collectively known as extraintestinal pathogenic E. coli (ExPEC). Characterization of ExPEC strains using various typing techniques has shown that they harbor many similarities, despite their isolation from different host species, leading to the hypothesis that ExPEC may have zoonotic potential. The present study examined a subset of ExPEC strains: neonatal meningitis E. coli (NMEC) strains and avian-pathogenic E. coli (APEC) strains belonging to the O18 serogroup. The study found that they were not easily differentiated on the basis of multilocus sequence typing, phylogenetic typing, or carriage of large virulence plasmids. Among the APEC strains examined, one strain was found to be an outlier, based on the results of these typing methods, and demonstrated reduced virulence in murine and avian pathogenicity models. Some of the APEC strains tested in a rat model of human neonatal meningitis were able to cause meningitis, demonstrating APECs ability to cause disease in mammals, lending support to the hypothesis that APEC strains have zoonotic potential. In addition, some NMEC strains were able to cause avian colisepticemia, providing further support for this hypothesis. However, not all of the NMEC and APEC strains tested were able to cause disease in avian and murine hosts, despite the apparent similarities in their known virulence attributes. Thus, it appears that a subset of NMEC and APEC strains harbors zoonotic potential, while other strains do not, suggesting that unknown mechanisms underlie host specificity in some ExPEC strains.


Journal of Applied Microbiology | 2003

The incidence of antimicrobial-resistant Salmonella spp on freshly processed poultry from US Midwestern processing plants.

Catherine M. Logue; Julie S. Sherwood; Pamela A. Olah; L.M. Elijah; M.R. Dockter

Aims: To determine the incidence of antimicrobial‐resistant Salmonella spp. on processed poultry (turkey) at Midwestern poultry plants.


PLOS ONE | 2014

Overlapped Sequence Types (STs) and Serogroups of Avian Pathogenic (APEC) and Human Extra-Intestinal Pathogenic (ExPEC) Escherichia coli Isolated in Brazil

Renato Pariz Maluta; Catherine M. Logue; Monique Ribeiro Tiba Casas; Ting Meng; Elisabete Aparecida Lopes Guastalli; Thaís Cabrera Galvão Rojas; Augusto Cezar Montelli; Terue Sadatsune; Marcelo de Carvalho Ramos; Lisa K. Nolan; Wanderley Dias da Silveira

Avian pathogenic Escherichia coli (APEC) strains belong to a category that is associated with colibacillosis, a serious illness in the poultry industry worldwide. Additionally, some APEC groups have recently been described as potential zoonotic agents. In this work, we compared APEC strains with extraintestinal pathogenic E. coli (ExPEC) strains isolated from clinical cases of humans with extra-intestinal diseases such as urinary tract infections (UTI) and bacteremia. PCR results showed that genes usually found in the ColV plasmid (tsh, iucA, iss, and hlyF) were associated with APEC strains while fyuA, irp-2, fepC sitDchrom, fimH, crl, csgA, afa, iha, sat, hlyA, hra, cnf1, kpsMTII, clpV Sakai and malX were associated with human ExPEC. Both categories shared nine serogroups (O2, O6, O7, O8, O11, O19, O25, O73 and O153) and seven sequence types (ST10, ST88, ST93, ST117, ST131, ST155, ST359, ST648 and ST1011). Interestingly, ST95, which is associated with the zoonotic potential of APEC and is spread in avian E. coli of North America and Europe, was not detected among 76 APEC strains. When the strains were clustered based on the presence of virulence genes, most ExPEC strains (71.7%) were contained in one cluster while most APEC strains (63.2%) segregated to another. In general, the strains showed distinct genetic and fingerprint patterns, but avian and human strains of ST359, or ST23 clonal complex (CC), presented more than 70% of similarity by PFGE. The results demonstrate that some “zoonotic-related” STs (ST117, ST131, ST10CC, ST23CC) are present in Brazil. Also, the presence of moderate fingerprint similarities between ST359 E. coli of avian and human origin indicates that strains of this ST are candidates for having zoonotic potential.


Avian Diseases | 2006

Virulence Genotyping of Salmonella spp. with Multiplex PCR

Jerod A. Skyberg; Catherine M. Logue; Lisa K. Nolan

Abstract The purpose of this study was to develop a multiplex polymerase chain reaction (PCR) protocol useful in the virulence genotyping of Salmonella spp. with the idea that genotyping could augment current Salmonella characterization and typing methods. Seventeen genes associated with Salmonella invasion, fimbrial production, toxin production, iron transport, and intramacrophage survival were targeted by three PCR reactions. Most of these genes are required for full Salmonella virulence in a murine model, and many are also located on Salmonella pathogenicity islands (PAIs) and are associated with type III secretion systems (TTSSs). Once the success of procedures that used positive and negative control strains was verified, the genotypes of 78 Salmonella isolates incriminated in avian salmonellosis (primarily from sick, commercially reared chickens and turkeys) and 80 Salmonella isolates from apparently healthy chickens or turkeys were compared. Eleven of the 17 genes tested (invA, orgA, prgH, tolC, spaN [invJ], sipB, sitC, pagC, msgA, spiA, and iroN) were found in all of the isolates. Another (sopB) was present in all isolates from sick birds and all but one isolate from healthy birds. The remaining five genes (lpfC, cdtB, sifA, pefA, and spvB) were found in 10%–90% of the isolates from sick birds and 3.75%–90% of the healthy birds. No significant differences in the occurrence of these genes between the two groups of isolates were detected. These results suggest that these virulence genes, and presumably the PAIs and TTSSs with which they are associated, are widely distributed among Salmonella isolates of birds, regardless of whether their hosts of origin have been identified as having salmonellosis.


Journal of Applied Microbiology | 2003

The incidence of Campylobacter spp. on processed turkey from processing plants in the midwestern United States

Catherine M. Logue; Julie S. Sherwood; L.M. Elijah; Pamela A. Olah; M.R. Dockter

Aim: The primary aim of this study was to determine the incidence of Campylobacter spp. on turkey, presented for processing at participating production plants located in the midwest region of the United States.


Infection and Immunity | 2010

Sequence Analysis and Characterization of a Transferable Hybrid Plasmid Encoding Multidrug Resistance and Enabling Zoonotic Potential for Extraintestinal Escherichia coli

Timothy J. Johnson; Dianna M. Jordan; Subhashinie Kariyawasam; Adam L. Stell; Nathan P. Bell; Yvonne Wannemuehler; Claudia Fernández Alarcón; Ganwu Li; Kelly A. Tivendale; Catherine M. Logue; Lisa K. Nolan

ABSTRACT ColV plasmids of extraintestinal pathogenic Escherichia coli (ExPEC) encode a variety of fitness and virulence factors and have long been associated with septicemia and avian colibacillosis. These plasmids are found significantly more often in ExPEC, including ExPEC associated with human neonatal meningitis and avian colibacillosis, than in commensal E. coli. Here we describe pAPEC-O103-ColBM, a hybrid RepFIIA/FIB plasmid harboring components of the ColV pathogenicity island and a multidrug resistance (MDR)-encoding island. This plasmid is mobilizable and confers the ability to cause septicemia in chickens, the ability to cause bacteremia resulting in meningitis in the rat model of human disease, and the ability to resist the killing effects of multiple antimicrobial agents and human serum. The results of a sequence analysis of this and other ColV plasmids supported previous findings which indicated that these plasmid types arose from a RepFIIA/FIB plasmid backbone on multiple occasions. Comparisons of pAPEC-O103-ColBM with other sequenced ColV and ColBM plasmids indicated that there is a core repertoire of virulence genes that might contribute to the ability of some ExPEC strains to cause high-level bacteremia and meningitis in a rat model. Examination of a neonatal meningitis E. coli (NMEC) population revealed that approximately 58% of the isolates examined harbored ColV-type plasmids and that 26% of these plasmids had genetic contents similar to that of pAPEC-O103-ColBM. The linkage of the ability to confer MDR and the ability contribute to multiple forms of human and animal disease on a single plasmid presents further challenges for preventing and treating ExPEC infections.


Foodborne Pathogens and Disease | 2009

Examination of the Source and Extended Virulence Genotypes of Escherichia coli Contaminating Retail Poultry Meat

Timothy J. Johnson; Catherine M. Logue; Yvonne Wannemuehler; Subhashinie Kariyawasam; Curt Doetkott; Chitrita DebRoy; David G. White; Lisa K. Nolan

Extraintestinal pathogenic Escherichia coli (ExPEC) are major players in human urinary tract infections, neonatal bacterial meningitis, and sepsis. Recently, it has been suggested that there might be a zoonotic component to these infections. To determine whether the E. coli contaminating retail poultry are possible extraintestinal pathogens, and to ascertain the source of these contaminants, they were assessed for their genetic similarities to E. coli incriminated in colibacillosis (avian pathogenic E. coli [APEC]), E. coli isolated from multiple locations of apparently healthy birds at slaughter, and human ExPEC. It was anticipated that the retail poultry isolates would most closely resemble avian fecal E. coli since only apparently healthy birds are slaughtered, and fecal contamination of carcasses is the presumed source of meat contamination. Surprisingly, this supposition proved incorrect, as the retail poultry isolates exhibited gene profiles more similar to APEC than to fecal isolates. These isolates contained a number of ExPEC-associated genes, including those associated with ColV virulence plasmids, and many belonged to the B2 phylogenetic group, known to be virulent in human hosts. Additionally, E. coli isolated from the crops and gizzards of apparently healthy birds at slaughter also contained a higher proportion of ExPEC-associated genes than did the avian fecal isolates examined. Such similarities suggest that the widely held beliefs about the sources of poultry contamination may need to be reassessed. Also, the presence of ExPEC-like clones on retail poultry meat means that we cannot yet rule out poultry as a source of ExPEC human disease.

Collaboration


Dive into the Catherine M. Logue's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie S. Sherwood

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Curt Doetkott

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Ganwu Li

Iowa State University

View shared research outputs
Top Co-Authors

Avatar

Suranjan Panigrahi

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

M. J. Marchello

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge