Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine Marchand-Leroux is active.

Publication


Featured researches published by Catherine Marchand-Leroux.


Anesthesiology | 2012

Evaluation of Prothrombin Complex Concentrate and Recombinant Activated Factor VII to Reverse Rivaroxaban in a Rabbit Model

Anne Godier; Anastasia Miclot; Bernard Le Bonniec; Marion Durand; Anne-Marie Fischer; Joseph Emmerich; Catherine Marchand-Leroux; Thomas Lecompte; Charles-Marc Samama

Background: As a potent anticoagulant agent, rivaroxaban exposes a risk of bleeding. An effective way to reverse its effects is needed. Objectives were to study efficacy and safety of recombinant activated factor VII (rFVIIa) and prothrombin complex concentrate (PCC) to reverse the anticoagulant effect of an overdose of rivaroxaban in a rabbit model of bleeding and thrombosis. Methods: First, a dose-ranging study assessed the minimal rivaroxaban dose that increased bleeding. Then, 48 anesthetized and ventilated rabbits were randomized into four groups: control (saline), rivaroxaban (rivaroxaban and saline), rFVIIa (rivaroxaban and rFVIIa), and PCC (rivaroxaban and PCC). The Folts model was applied: a stenosis and an injury were carried out on the carotid artery, inducing thrombosis, detected as cyclic flow reductions, which were recorded over 20 min. Then the following were measured: ear immersion bleeding time, clotting times, anti-Xa activity, thrombelastometric parameters, and thrombin generation test. Ultimately, a hepatosplenic section was performed and the total amount of blood loss after 15 min was evaluated as primary endpoint. Results: Rivaroxaban increased blood loss (17 g [8–32] vs. 7 g [5–18] for control (median [range]), P = 0.0004), ear bleeding time, clotting times, thrombelastographic clotting time, and decreased thrombin generation. In contrast, rFVIIa decreased ear bleeding time (92 s [65–115] vs. 140 s [75–190], P < 0.02), but without efficacy on blood loss. PCC and rFVIIa decreased activated partial thromboplastin time as well as thrombelastographic clotting time. Regarding safety, neither rFVIIa nor PCC increased cyclic flow reductions. Conclusion: rFVIIa and PCC partially improved laboratory parameters, but did not reverse rivaroxaban induced-bleeding.


Brain Research | 2009

Minocycline effects on cerebral edema: relations with inflammatory and oxidative stress markers following traumatic brain injury in mice.

Shadi Homsi; Fabiola Federico; Nicole Croci; Bruno Palmier; Michel Plotkine; Catherine Marchand-Leroux; Mehrnaz Jafarian-Tehrani

One of the severe complications following traumatic brain injury (TBI) is cerebral edema and its effective treatment is of great interest to prevent further brain damage. This study investigated the effects of minocycline, known for its anti-inflammatory properties, on cerebral edema and its respective inflammatory markers by comparing different dose regimens, on oxidative stress and on neurological dysfunction following TBI. The weight drop model was used to induce TBI in mice. The brain water content was measured to evaluate cerebral edema. Inflammatory markers were detected by ELISA (IL-1beta), zymography and Western blot (MMP-9). The oxidative stress marker (glutathione levels) and neurological function were measured by Griffith technique and string test, respectively. Minocycline was administered i.p. once (5 min), twice (5 min and 3 h) or triple (5 min, 3 h and 9 h) following TBI. The first dose of minocycline only varied (45 or 90 mg/kg), whereas the following doses were all at 45 mg/kg. The single and double administrations of minocycline reduced the increase of inflammatory markers at 6 h post-TBI. Minocycline also reduced cerebral edema at this time point, only after double administration and at the high dose regimen, although with no effect on the TBI-induced oxidized glutathione increase. The anti-edematous effect of minocycline persisted up to 24 h, upon a triple administration, and accompanied by a neurological recovery. In conclusion, we reported an anti-edematous effect of minocycline after TBI in mice according to a specific treatment regimen. These findings emphasize that the beneficial effects of minocycline depend on the treatment regimen following a brain injury.


Journal of Neurotrauma | 2010

Blockade of Acute Microglial Activation by Minocycline Promotes Neuroprotection and Reduces Locomotor Hyperactivity after Closed Head Injury in Mice: A Twelve-Week Follow-Up Study

Shadi Homsi; Tomaso Piaggio; Nicole Croci; Florence Noble; Michel Plotkine; Catherine Marchand-Leroux; Mehrnaz Jafarian-Tehrani

Traumatic brain injury (TBI) causes a wide spectrum of consequences, such as microglial activation, cerebral inflammation, and focal and diffuse brain injury, as well as functional impairment. In this study we aimed to investigate the effects of acute treatment with minocycline as an inhibitor of microglial activation on cerebral focal and diffuse lesions, and on the spontaneous locomotor activity following TBI. The weight-drop model was used to induce TBI in mice. Microglial activation and diffuse axonal injury (DAI) were detected by immunohistochemistry using CD11b and ss-amyloid precursor protein (ss-APP) immunolabeling, respectively. Focal injury was determined by the measurement of the brain lesion volume. Horizontal and vertical locomotor activities were measured for up to 12 weeks post-injury by an automated actimeter. Minocycline or vehicle were administered three times post-insult, at 5 min (90 mg/kg i.p.), 3 h, and 9 h post-TBI (45 mg/kg i.p.). Minocycline treatment attenuated microglial activation by 59% and reduced brain lesion volume by 58%, yet it did not affect DAI at 24 h post-TBI. More interestingly, minocycline significantly decreased TBI-induced locomotor hyperactivity at 48 h post-TBI, and its effect lasted for up to 8 weeks. Taken together, the results indicate that microglial activation appears to play an important role in the development of TBI-induced focal injury and the subsequent locomotor hyperactivity, and its short-term inhibition provides long-lasting functional recovery after TBI. These findings emphasize the fact that minocycline could be a promising new therapeutic strategy for head-injured patients.


Endocrinology | 2012

Progesterone receptors: a key for neuroprotection in experimental stroke.

Ailing Liu; Isabelle Margaill; Shaodong Zhang; Florencia Labombarda; Bérard Coqueran; Brigitte Delespierre; Philippe Liere; Catherine Marchand-Leroux; Bert W. O'Malley; John P. Lydon; Alejandro F. De Nicola; Regine Sitruk-Ware; Claudia Mattern; Michel Plotkine; Michael Schumacher; Rachida Guennoun

Progesterone receptors (PR) are expressed throughout the brain. However, their functional significance remains understudied. Here we report a novel role of PR as crucial mediators of neuroprotection using a model of transient middle cerebral artery occlusion and PR knockout mice. Six hours after ischemia, we observed a rapid increase in progesterone and 5α-dihydroprogesterone, the endogenous PR ligands, a process that may be a part of the natural neuroprotective mechanisms. PR deficiency, and even haploinsufficiency, increases the susceptibility of the brain to stroke damage. Within a time window of 24 h, PR-dependent signaling of endogenous brain progesterone limits the extent of tissue damage and the impairment of motor functions. Longer-term improvement requires additional treatment with exogenous progesterone and is also PR dependent. The potent and selective PR agonist Nestorone is also effective. In contrast to progesterone, levels of the neurosteroid allopregnanolone, which modulates γ-aminobutyric acid type A receptors, did not increase after stroke, but its administration protected both wild-type and PR-deficient mice against ischemic damage. These results show that 1) PR are linked to signaling pathways that influence susceptibility to stroke, and 2) PR are direct key targets for both endogenous neuroprotection and for therapeutic strategies after stroke, and they suggest a novel indication for synthetic progestins already validated for contraception. Although allopregnanolone may not be an endogenous neuroprotective agent, its administration protects the brain against ischemic damage by signaling mechanisms not involving PR. Collectively, our data clarify the relative roles of PR and allopregnanolone in neuroprotection after stroke.


International Journal of Cardiology | 2013

Evaluation of recombinant activated factor VII, prothrombin complex concentrate, and fibrinogen concentrate to reverse apixaban in a rabbit model of bleeding and thrombosis

Anne-Céline Martin; Bernard Le Bonniec; A Fischer; Catherine Marchand-Leroux; Pascale Gaussem; Charles-Marc Samama; A. Godier

BACKGROUND As all anticoagulants, apixaban exposes to a bleeding risk, thus an effective way to reverse its effects is needed. Objectives were to study efficacy and safety of recombinant activated factor VII (rFVIIa), prothrombin complex concentrate (PCC), and fibrinogen concentrate (Fib) to reverse apixaban in a rabbit model of bleeding and thrombosis. METHODS After a dose-ranging study to assess the minimal amount of apixaban increasing bleeding, 63 anaesthetized rabbits were randomized into 5 groups: control (saline), apixaban (apixaban and saline), rFVIIa (apixaban and rFVIIa), PCC (apixaban and PCC) and fibrinogen (apixaban and Fib). The Folts model was applied: a stenosis and an injury were carried out on the carotid artery, inducing thrombosis detected as cyclic flow reductions (CFRs) within 20 min. A number of parameters were recorded through ear immersion bleeding time (BT), clotting times (CT), thrombelastography, and thrombin generation time (TGT). Ultimately, a hepatosplenic section was performed to evaluate as primary endpoint the blood loss in 15 min. RESULTS Apixaban increased blood loss (11.6 ± 3 g vs. 8.3 ± 3 g for control, p < 0.0003), lengthened BT, the prothrombin time (PT), thrombelastographic CT and decreased thrombin generation. Only rFVIIa reduced BT yet failed to improve blood loss. PCC and rFVIIa both shortened the PT, CT in thrombelastographic, and lag time in TGT. Fib improved clot firmness, enhanced thrombin generation but increased bleeding. Regarding safety, neither rFVIIa, PCC, nor Fib increased CFRs. CONCLUSION rFVIIa, PCC, and Fib failed to reverse apixaban-induced bleeding. They only improved several laboratory parameters.


Neuroscience Letters | 2012

Evaluation of late cognitive impairment and anxiety states following traumatic brain injury in mice: the effect of minocycline.

Eleni Siopi; Gemma Llufriu-Dabén; Francesca Fanucchi; Michel Plotkine; Catherine Marchand-Leroux; Mehrnaz Jafarian-Tehrani

Comorbidity of cognitive and stress disorders is a common clinical sequel of traumatic brain injury (TBI) that is essentially determined by the site and severity of the insult, but also by the extent of the ensuing neuroinflammatory response. The present study sought to examine the late effects of closed-head TBI on memory function and anxiety in mice, in order to further examine the potential efficacy of an acute anti-inflammatory treatment with minocycline. The mouse model of closed-head injury by mechanical percussion was applied on anesthetized Swiss mice. The treatment protocol included three injections of minocycline (i.p.) at 5 min (90 mg/kg), 3 h and 9 h (45 mg/kg) post-TBI. The Novel Object Recognition Test as well as the Elevated Plus Maze (EPM) and Elevated Zero Maze (EZM) tasks were employed to assess post-TBI memory and anxiety respectively. Our results revealed a recognition memory deficit that was significant up to at least 13 weeks post-TBI. However, neither EPM nor EZM revealed any alteration in post-TBI anxiety levels albeit some mild disinhibition. Most importantly, minocycline was able to attenuate the memory impairment in an effective and lasting manner, highlighting its therapeutic potential in TBI.


Neuroscience Letters | 2007

Acute systemic inflammation induces central mitochondrial damage and mnesic deficit in adult Swiss mice

Florence Noble; Elisabeth Rubira; Mohamed Boulanouar; Bruno Palmier; Michel Plotkine; Jean-Michel Warnet; Catherine Marchand-Leroux

The aim of this study was to investigate how the brain is affected during systemic inflammation. For this purpose, Swiss mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 250microg/mouse) to mimic aspects of systemic infection. Spatial learning in Y-maze test demonstrated a differential learning profile during the training test between control and LPS-treated mice, with an alteration in the latter group. We show that systemic LPS-induced inflammation and oxidative injury as assessed by reactive oxygen species (ROS) and nitrites/nitrates (NOx) production associated with reduced glutathione (GSH) depletion, cyclooxygenase-2 (COX-2) expression, and lipid peroxidation. LPS also induced a loss in mitochondrial integrity as shown by a significant decrease in membrane potential and impairment in mitochondrial redox activity. Thus, peripheral inflammation by producing brain inflammation and oxidative injury causes mnesic deficits. It remains to determine whether such events can induce neuronal dysfunction/degeneration and, with time, lead to cholinergic deficiency, amyloid deposits and cognitive impairments as they occur in Alzheimers disease.


BMC Molecular Biology | 2008

Housekeeping while brain's storming Validation of normalizing factors for gene expression studies in a murine model of traumatic brain injury

Hervé Rhinn; Catherine Marchand-Leroux; Nicole Croci; Michel Plotkine; Daniel Scherman; Virginie Escriou

BackgroundTraumatic brain injury models are widely studied, especially through gene expression, either to further understand implied biological mechanisms or to assess the efficiency of potential therapies. A large number of biological pathways are affected in brain trauma models, whose elucidation might greatly benefit from transcriptomic studies. However the suitability of reference genes needed for quantitative RT-PCR experiments is missing for these models.ResultsWe have compared five potential reference genes as well as total cDNA level monitored using Oligreen reagent in order to determine the best normalizing factors for quantitative RT-PCR expression studies in the early phase (0–48 h post-trauma (PT)) of a murine model of diffuse brain injury. The levels of 18S rRNA, and of transcripts of β-actin, glyceraldehyde-3P-dehydrogenase (GAPDH), β-microtubulin and S100β were determined in the injured brain region of traumatized mice sacrificed at 30 min, 3 h, 6 h, 12 h, 24 h and 48 h post-trauma.The stability of the reference genes candidates and of total cDNA was evaluated by three different methods, leading to the following rankings as normalization factors, from the most suitable to the less: by using geNorm VBA applet, we obtained the following sequence: cDNA(Oligreen); GAPDH > 18S rRNA > S100β > β-microtubulin > β-actin; by using NormFinder Excel Spreadsheet, we obtained the following sequence: GAPDH > cDNA(Oligreen) > S100β > 18S rRNA > β-actin > β-microtubulin; by using a Confidence-Interval calculation, we obtained the following sequence: cDNA(Oligreen) > 18S rRNA; GAPDH > S100β > β-microtubulin > β-actin.ConclusionThis work suggests that Oligreen cDNA measurements, 18S rRNA and GAPDH or a combination of them may be used to efficiently normalize qRT-PCR gene expression in mouse brain trauma injury, and that β-actin and β-microtubulin should be avoided.The potential of total cDNA as measured by Oligreen as a first-intention normalizing factor with a broad field of applications is highlighted. Pros and cons of the three methods of normalization factors selection are discussed. A generic time- and cost-effective procedure for normalization factor validation is proposed.


Journal of Pharmacology and Experimental Therapeutics | 2008

Combination therapy with fenofibrate, a peroxisome proliferator-activated receptor alpha agonist, and simvastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor, on experimental traumatic brain injury.

Xiao Ru Chen; Valérie C. Besson; Tiphaine Beziaud; Michel Plotkine; Catherine Marchand-Leroux

We and others have demonstrated that fibrates [peroxisome proliferator-activated receptor (PPAR)α agonists] and statins (3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors) exerted neuroprotective and pleiotropic effects in experimental models of traumatic brain injury (TBI). Because the combination of statins and fibrates synergistically enhanced PPARα activation, we hypothesized that the combination of both drugs may exert more important and/or prolonged beneficial effects in TBI than each alone. In this study, we examined the combination of fenofibrate with simvastatin, administered 1 and 6 h after injury, on the consequences of TBI. First, our dose-effect study demonstrated that the most efficient dose of simvastatin (37.5 mg/kg) reduced post-traumatic neurological deficits and brain edema. Then, the effects of the combination of fenofibrate (50 mg/kg) and simvastatin (37.5 mg/kg), given p.o. at 1 and 6 h after TBI, were evaluated on the TBI consequences in the early and late phase after injury. The combination exerted more sustained neurological recovery-promoting and antiedematous effects than monotherapies, and it synergistically decreased the post-traumatic brain lesion. Furthermore, a delayed treatment given p.o. at 3 and 8 h after TBI with the combination was still efficient on neurological deficits induced by TBI, but it failed to reduce the brain edema at 48 h. The present data represent the first demonstration that the combination of fenofibrate and simvastatin exerts prolonged and synergistic neuroprotective effects than each drug alone. Thus, these results may have important therapeutic significance for the treatment of TBI.


Journal of Neurotrauma | 2011

Minocycline Restores sAPPα Levels and Reduces the Late Histopathological Consequences of Traumatic Brain Injury in Mice

Eleni Siopi; Angelo H. Cho; Shadi Homsi; Nicole Croci; Michel Plotkine; Catherine Marchand-Leroux; Mehrnaz Jafarian-Tehrani

Traumatic brain injury (TBI) induces both focal and diffuse lesions that are concurrently responsible for the ensuing morbidity and mortality and for which no established treatment is available. It has been recently reported that an endogenous neuroprotector, the soluble form α of the amyloid precursor protein (sAPPα), exerts neuroprotective effects following TBI. However, the emergent post-traumatic neuroinflammatory environment compromises sAPPα production and may promote neuronal degeneration and consequent brain atrophy. Hence, the aim of this study was to examine the effects of the anti-inflammatory drug minocycline on sAPPα levels, as well as on long-term histological consequences post-TBI. The weight-drop model was used to induce TBI in mice. Minocycline or its vehicle were administered three times: at 5 min (90 mg/kg, i.p.) and at 3 and 9 h (45 mg/kg, i.p.) post-TBI. The levels of sAPPα, the extent of brain atrophy, and reactive gliosis were evaluated by ELISA, cresyl violet, and immunolabeling of GFAP and CD11b, respectively. Our results revealed a post-TBI sAPPα decrease that was significantly attenuated by minocycline. Additionally, corpus callosum and striatal atrophy, ventriculomegaly, astrogliosis, and microglial activation were observed at 3 months post-TBI. All the above consequences were significantly reduced by minocycline. In conclusion, inhibition of the acute phase of post-TBI neuroinflammation was associated with the sparing of sAPPα and the protection of brain tissue in the long-term, emphasizing the potential role of minocycline as an effective treatment for TBI.

Collaboration


Dive into the Catherine Marchand-Leroux's collaboration.

Top Co-Authors

Avatar

Michel Plotkine

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Bruno Palmier

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabelle Margaill

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eleni Siopi

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Bérard Coqueran

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Nicole Croci

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shadi Homsi

Paris Descartes University

View shared research outputs
Researchain Logo
Decentralizing Knowledge