Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine Melas is active.

Publication


Featured researches published by Catherine Melas.


Human Gene Therapy | 2010

Characterization of a Recombinant Adeno-Associated Virus Type 2 Reference Standard Material

Martin Lock; Susan P. McGorray; Alberto Auricchio; Eduard Ayuso; E. Jeffrey Beecham; Véronique Blouin-Tavel; Fatima Bosch; Mahuya Bose; Barry J. Byrne; Tina Caton; John A. Chiorini; Abdelwahed Chtarto; K. Reed Clark; Thomas J. Conlon; Christophe Darmon; Monica Doria; Anne M. Douar; Terence R. Flotte; Joyce D. Francis; Achille François; Mauro Giacca; Michael T. Korn; Irina Korytov; Xavier León; Barbara Leuchs; Gabriele Lux; Catherine Melas; Hiroaki Mizukami; Philippe Moullier; Marcus Müller

A recombinant adeno-associated virus serotype 2 Reference Standard Material (rAAV2 RSM) has been produced and characterized with the purpose of providing a reference standard for particle titer, vector genome titer, and infectious titer for AAV2 gene transfer vectors. Production and purification of the reference material were carried out by helper virus-free transient transfection and chromatographic purification. The purified bulk material was vialed, confirmed negative for microbial contamination, and then distributed for characterization along with standard assay protocols and assay reagents to 16 laboratories worldwide. Using statistical transformation and modeling of the raw data, mean titers and confidence intervals were determined for capsid particles ({X}, 9.18 x 10¹¹ particles/ml; 95% confidence interval [CI], 7.89 x 10¹¹ to 1.05 x 10¹² particles/ml), vector genomes ({X}, 3.28 x 10¹⁰ vector genomes/ml; 95% CI, 2.70 x 10¹⁰ to 4.75 x 10¹⁰ vector genomes/ml), transducing units ({X}, 5.09 x 10⁸ transducing units/ml; 95% CI, 2.00 x 10⁸ to 9.60 x 10⁸ transducing units/ml), and infectious units ({X}, 4.37 x 10⁹ TCID₅₀ IU/ml; 95% CI, 2.06 x 10⁹ to 9.26 x 10⁹ TCID₅₀ IU/ml). Further analysis confirmed the identity of the reference material as AAV2 and the purity relative to nonvector proteins as greater than 94%. One obvious trend in the quantitative data was the degree of variation between institutions for each assay despite the relatively tight correlation of assay results within an institution. This relatively poor degree of interlaboratory precision and accuracy was apparent even though attempts were made to standardize the assays by providing detailed protocols and common reagents. This is the first time that such variation between laboratories has been thoroughly documented and the findings emphasize the need in the field for universal reference standards. The rAAV2 RSM has been deposited with the American Type Culture Collection and is available to the scientific community to calibrate laboratory-specific internal titer standards. Anticipated uses of the rAAV2 RSM are discussed.


Neuroreport | 2000

Tropism of AAV-2 vectors for neurons of the globus pallidus

Liliane Tenenbaum; Fabrice Jurysta; A Stathopoulos; Z Puschban; Catherine Melas; Wim T.J.M.C. Hermens; Joost Verhaagen; Bruno Pichon; Thierry Velu; Marc Levivier

A recombinant AAV-2 vector encoding the green fluorescent protein (gfp) under the control of the cytomegalovirus (CMV) promoter was injected into the striatum at varying antero-posterior coordinates. When the virus was delivered to the anterior part of the striatum, transduction efficiency was low and limited to the vicinity of the needle tract. In contrast, after injection into the posterior part of the striatum, in addition to a localized transduced area in the striatum, efficient and widespread transduction was observed at distance from the injection site, in the globus pallidus. In the latter case, labelled cells were also detected in the internal capsule and in the stria terminalis. The number of transduced cells in the striatum increased up to 1 month and then decreased whereas in the globus pallidus, transduction was maximal as early as 2 weeks post-injection. In the striatum and in the globus pallidus, the labelled cells had a neuron-like morphology. In contrast, in the internal capsule, labelled cells had a glial-like morphology.


Experimental Neurology | 2007

Controlled delivery of glial cell line-derived neurotrophic factor by a single tetracycline-inducible AAV vector.

Abdelwahed Chtarto; Xin Yang; Olivier Bockstael; Catherine Melas; David Blum; Enni Lehtonen; Laurence Abeloos; J-M Jaspar; Marc Levivier; Jacques Brotchi; Thierry Velu; Liliane Tenenbaum

An autoregulated tetracycline-inducible recombinant adeno-associated viral vector (rAAV-pTet(bidi)ON) utilizing the rtTAM2 reverse tetracycline transactivator (rAAV-rtTAM2) was used to conditionally express the human GDNF cDNA. Doxycycline, a tetracycline analog, induced a time- and dose-dependent release of GDNF in vitro in human glioma cells infected with rAAV-rtTAM2 serotype 2 virus. Introducing the Woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) downstream to the rtTAM2 coding sequence, resulted in a more rapid induction and a higher basal expression level. In vivo, 8 weeks after a single injection of the rAAV-rtTAM2-GDNF vector encapsidated into AAV serotype 1 capsids in the rat striatum, the GDNF protein level was 60 pg/mg tissue in doxycycline-treated animals whereas in untreated animals, it was undistinguishable from the endogenous level ( approximately 4 pg/mg tissue). However, a residual GDNF expression in the uninduced animals was evidenced by a sensitive immunohistochemical staining. As compared to rAAV1-rtTAM2-GDNF, the rAAV1-rtTAM2-WPRE-GDNF vector expressed a similar concentration of GDNF in the induced state (with doxycycline) but a basal level (without doxycycline) approximately 2.5-fold higher than the endogenous striatal level. As a proof for biological activity, for both vectors, downregulation of tyrosine hydroxylase was evidenced in dopaminergic terminals of doxycycline-treated but not untreated animals. In conclusion, the rAAV1-rtTAM2 vector which expressed biologically relevant doses of GDNF in the striatum in response to doxycycline with a basal level undistinguishable from the endogenous striatal level, as measured by quantitative ELISA assay, constitutes an interesting tool for local conditional transgenesis.


Molecular therapy. Methods & clinical development | 2016

A regulatable AAV vector mediating GDNF biological effects at clinically-approved sub-antimicrobial doxycycline doses

Abdelwahed Chtarto; Marie Humbert-Claude; Olivier Bockstael; Atze T. Das; Sébastien Boutry; Ludivine S. Breger; Bep Klaver; Catherine Melas; Pedro Barroso-Chinea; Tomás González-Hernández; Robert N. Muller; Olivier Dewitte; Marc Levivier; Cecilia Lundberg; Ben Berkhout; Liliane Tenenbaum

Preclinical and clinical data stress the importance of pharmacologically-controlling glial cell line-derived neurotrophic factor (GDNF) intracerebral administration to treat PD. The main challenge is finding a combination of a genetic switch and a drug which, when administered at a clinically-approved dose, reaches the brain in sufficient amounts to induce a therapeutic effect. We describe a highly-sensitive doxycycline-inducible adeno-associated virus (AAV) vector. This vector allowed for the first time a longitudinal analysis of inducible transgene expression in the brain using bioluminescence imaging. To evaluate the dose range of GDNF biological activity, the inducible AAV vector (8.0 × 109 viral genomes) was injected in the rat striatum at four delivery sites and increasing doxycycline doses administered orally. ERK/Akt signaling activation as well as tyrosine hydroxylase downregulation, a consequence of long-term GDNF treatment, were induced at plasmatic doxycycline concentrations of 140 and 320 ng/ml respectively, which are known not to increase antibiotic-resistant microorganisms in patients. In these conditions, GDNF covered the majority of the striatum. No behavioral abnormalities or weight loss were observed. Motor asymmetry resulting from unilateral GDNF treatment only appeared with a 2.5-fold higher vector and a 13-fold higher inducer doses. Our data suggest that using the herein-described inducible AAV vector, biological effects of GDNF can be obtained in response to sub-antimicrobial doxycycline doses.


Human Gene Therapy | 2012

Rapid transgene expression in multiple precursor cell types of adult rat subventricular zone mediated by adeno-associated type 1 vectors.

Olivier Bockstael; Catherine Melas; Catherine Pythoud; Marc Levivier; Douglas M. McCarty; R. Jude Samulski; Olivier De Witte; Liliane Tenenbaum

The adult rat brain subventricular zone (SVZ) contains proliferative precursors that migrate to the olfactory bulb (OB) and differentiate into mature neurons. Recruitment of precursors constitutes a potential avenue for brain repair. We have investigated the kinetics and cellular specificity of transgene expression mediated by AAV2/1 vectors (i.e., adeno-associated virus type 2 pseudotyped with AAV1 capsid) in the SVZ. Self-complementary (sc) and single-stranded (ss) AAV2/1 vectors mediated efficient GFP expression, respectively, at 17 and 24 hr postinjection. Transgene expression was efficient in all the rapidly proliferating cells types, that is, Mash1(+) precursors (30% of the GFP(+) cells), Dlx2(+) neuronal progenitors (55%), Olig2(+) oligodendrocyte progenitors (35%), and doublecortin-positive (Dcx(+)) migrating cells (40%), but not in the slowly proliferating glial fibrillary acidic protein-positive (GFAP(+)) neural stem cell pool (5%). Because cell cycle arrest by wild-type and recombinant AAV has been described in primary cultures, we examined SVZ proliferative activity after vector injection. Indeed, cell proliferation was reduced immediately after vector injection but was normal after 1 month. In contrast, migration and differentiation of GFP(+) precursors were unaltered. Indeed, the proportion of Dcx(+) cells was similar in the injected and contralateral hemispheres. Furthermore, 1 month after vector injection into the SVZ, GFP(+) cells, found, as expected, in the OB granular cell layer, were mature GABAergic neurons. In conclusion, the rapid and efficient transgene expression in SVZ neural precursors mediated by scAAV2/1 vectors underlines their potential usefulness for brain repair via recruitment of immature cells. The observed transient precursor proliferation inhibition, not affecting their migration and differentiation, will likely not compromise this strategy.


Neuroreport | 2002

AAV2 vectors mediate efficient and sustained transduction of rat embryonic ventral mesencephalon.

Enni Lehtonen; F Bonnaud; Catherine Melas; Alphonse Lubansu; Brigitte Malgrange; Abdelwahed Chtarto; Thierry Velu; Jacques Brotchi; Marc Levivier; Marc Peschanski; Liliane Tenenbaum

The success of transplantation of human embryonic mesencephalic tissue to treat parkinsonian patients is limited by the poor survival of the transplant. We show that an AAV2 vector mediates efficient expression of the egfp reporter gene in organotypic cultures of freshly explanted solid fragments of rat embryonic ventral mesencephalon (VM). We observed early and sustained transgene expression (4 days to ≥ 6 weeks). Furthermore, rAAV-infected rat embryonic VM transplanted in the adult striatum continued to express EGFP for ≥ 3 months. More than 95% of the transduced cells were neurons. Dopaminergic neurons were transduced at low frequency at earlier time points. This method of gene delivery could prove useful to achieve local, continuous secretion of neurotrophic factors at physiologically relevant doses to treat Parkinsons disease.


Cell Transplantation | 2004

Efficient early and sustained transduction of human fetal mesencephalon using adeno-associated virus type 2 vectors.

Liliane Tenenbaum; Marc Peschanski; Catherine Melas; F Rodesh; Enni Lehtonen; A Stathopoulos; Thierry Velu; Jacques Brotchi; Marc Levivier

The success of transplantation of human fetal mesencephalic tissue into the putamen of patients with Parkinsons disease (PD) is still limited by the poor survival of the graft. In animal models of fetal transplantation for PD, antiapoptotic agents, such as growth factors or caspase inhibitors, or agents counteracting oxidative stress enhance the survival and reinnervation potential of the graft. Genetic modification of the transplant could allow a local and continuous delivery of these factors at physiologically relevant doses. The major challenge remains the development of strategies to achieve both early and sustained gene delivery in the absence of vector-mediated toxicity. We recently reported that E14 rat fetal mesencephalon could be efficiently tranduced by adeno-associated virus type 2 (AAV2) vectors and that gene expression was maintained until at least 3 months after transplantation in the adult rat striatum. Here we report that an AAV2 vector can mediate the expression of the EGFP reporter gene under the control of a CMV promoter in organotypic cultures of freshly explanted solid fragments of human fetal mesencephalic tissue as early as 3 days to at least 6 weeks postinfection. These results suggest that AAV2 vectors could be used to genetically modify the human fetal tissue prior to transplantation to Parkinsons patients to promote graft survival and integration.


Frontiers in Molecular Neuroscience | 2014

Intracisternal delivery of NFκB-inducible scAAV2/9 reveals locoregional neuroinflammation induced by systemic kainic acid treatment.

Olivier Bockstael; Liliane Tenenbaum; Deniz Dalkara; Catherine Melas; Olivier De Witte; Marc Levivier; Abdelwahed Chtarto

We have previously demonstrated disease-dependent gene delivery in the brain using an AAV vector responding to NFκB activation as a probe for inflammatory responses. This vector, injected focally in the parenchyma prior to a systemic kainic acid (KA) injection mediated inducible transgene expression in the hippocampus but not in the cerebellum, regions, respectively, known to be affected or not by the pathology. However, such a focal approach relies on previous knowledge of the model parameters and does not allow to predict the whole brain response to the disease. Global brain gene delivery would allow to predict the regional distribution of the pathology as well as to deliver therapeutic factors in all affected brain regions. We show that self-complementary AAV2/9 (scAAV2/9) delivery in the adult rat cisterna magna allows a widespread but not homogenous transduction of the brain. Indeed, superficial regions, i.e., cortex, hippocampus, and cerebellum were more efficiently transduced than deeper regions, such as striatum, and substantia nigra. These data suggest that viral particles penetration from the cerebrospinal fluid (CSF) into the brain is a limiting factor. Interestingly, AAV2/9-2YF a rationally designed capsid mutant (affecting surface tyrosines) increased gene transfer efficiency approximately fivefold. Neurons, astrocytes, and oligodendrocytes, but not microglia, were transduced in varying proportions depending on the brain region and the type of capsid. Finally, after a single intracisternal injection of scAAV2/9-2YF using the NFκB-inducible promoter, KA treatment induced transgene expression in the hippocampus and cortex but not in the cerebellum, corresponding to the expression of the CD11b marker of microglial activation. These data support the use of disease-inducible vectors administered in the cisterna magna as a tool to characterize the brain pathology in systemic drug-induced or transgenic disease models. However, further improvements are required to enhance viral particles penetration into the brain.


PLOS ONE | 2013

An Adeno-Associated Virus-Based Intracellular Sensor of Pathological Nuclear Factor-κB Activation for Disease-Inducible Gene Transfer

Abdelwahed Chtarto; Olivier Bockstael; Elias Gebara; Katia Vermoesen; Catherine Melas; Catherine Pythoud; Marc Levivier; Olivier De Witte; Ruth Luthi-Carter; Ralph Clinkers; Liliane Tenenbaum

Stimulation of resident cells by NF-κB activating cytokines is a central element of inflammatory and degenerative disorders of the central nervous system (CNS). This disease-mediated NF-κB activation could be used to drive transgene expression selectively in affected cells, using adeno-associated virus (AAV)-mediated gene transfer. We have constructed a series of AAV vectors expressing GFP under the control of different promoters including NF-κB -responsive elements. As an initial screen, the vectors were tested in vitro in HEK-293T cells treated with TNF-α. The best profile of GFP induction was obtained with a promoter containing two blocks of four NF-κB -responsive sequences from the human JCV neurotropic polyoma virus promoter, fused to a new tight minimal CMV promoter, optimally distant from each other. A therapeutical gene, glial cell line-derived neurotrophic factor (GDNF) cDNA under the control of serotype 1-encapsidated NF-κB -responsive AAV vector (AAV-NF) was protective in senescent cultures of mouse cortical neurons. AAV-NF was then evaluated in vivo in the kainic acid (KA)-induced status epilepticus rat model for temporal lobe epilepsy, a major neurological disorder with a central pathophysiological role for NF-κB activation. We demonstrate that AAV-NF, injected in the hippocampus, responded to disease induction by mediating GFP expression, preferentially in CA1 and CA3 neurons and astrocytes, specifically in regions where inflammatory markers were also induced. Altogether, these data demonstrate the feasibility to use disease-activated transcription factor-responsive elements in order to drive transgene expression specifically in affected cells in inflammatory CNS disorders using AAV-mediated gene transfer.


Neurological Research | 2007

Overexpression of mouse IsK protein fused to green fluorescent protein induces apoptosis of human astroglioma cells

A Stathopoulos; Catherine Melas; B Attali; David Blum; Marc Levivier; Jacques Brotchi; Thierry Velu; Liliane Tenenbaum

Abstract Intracellular K+ plays an important role in controlling ion homeostasis for maintaining cell volume and inhibiting activity of pro-apoptotic enzymes. Cytoplasmic K+ concentration is regulated by K+ uptake via Na+ -K+ -ATPase and K+ efflux through K+ channels in the plasma membrane. The IsK (KCNE1) protein is known to co-assemble with KCNQ1 (KvLQT1) protein to form a K+ channel underlying the slowly activating delayed rectifier K+ outward current which delays voltage activation. In order to further study the activity and cellular localization of IsK protein, we constructed a C-terminal fusion of IsK with EGFP (enhanced green fluorescent protein). Expression of the fusion protein appeared as clusters located in the plasma membrane and induced degeneration of both transiently or stably transfected cells.

Collaboration


Dive into the Catherine Melas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abdelwahed Chtarto

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Olivier Bockstael

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Jacques Brotchi

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Thierry Velu

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Enni Lehtonen

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Olivier De Witte

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

A Stathopoulos

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Xin Yang

Université libre de Bruxelles

View shared research outputs
Researchain Logo
Decentralizing Knowledge