Catherine Muller
University of Toulouse
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Catherine Muller.
Cancer Research | 2011
B. Dirat; Ludivine Bochet; M. Dabek; Danièle Daviaud; S tephanie Dauvillier; Bilal Majed; Yuan Yuan Wang; Aline Meulle; Bernard Salles; Sophie Le Gonidec; Ignacio Garrido; Ghislaine Escourrou; Philippe Valet; Catherine Muller
Early local tumor invasion in breast cancer results in a likely encounter between cancer cells and mature adipocytes, but the role of these fat cells in tumor progression remains unclear. We show that murine and human tumor cells cocultivated with mature adipocytes exhibit increased invasive capacities in vitro and in vivo, using an original two-dimensional coculture system. Likewise, adipocytes cultivated with cancer cells also exhibit an altered phenotype in terms of delipidation and decreased adipocyte markers associated with the occurrence of an activated state characterized by overexpression of proteases, including matrix metalloproteinase-11, and proinflammatory cytokines [interleukin (IL)-6, IL-1β]. In the case of IL-6, we show that it plays a key role in the acquired proinvasive effect by tumor cells. Equally important, we confirm the presence of these modified adipocytes in human breast tumors by immunohistochemistry and quantitative PCR. Interestingly, the tumors of larger size and/or with lymph nodes involvement exhibit the higher levels of IL-6 in tumor surrounding adipocytes. Collectively, all our data provide in vitro and in vivo evidence that (i) invasive cancer cells dramatically impact surrounding adipocytes; (ii) peritumoral adipocytes exhibit a modified phenotype and specific biological features sufficient to be named cancer-associated adipocytes (CAA); and (iii) CAAs modify the cancer cell characteristics/phenotype leading to a more aggressive behavior. Our results strongly support the innovative concept that adipocytes participate in a highly complex vicious cycle orchestrated by cancer cells to promote tumor progression that might be amplified in obese patients.
Cancer Letters | 2012
Yuan Yuan Wang; Camille Lehuédé; Victor Laurent; Béatrice Dirat; Stéphanie Dauvillier; Ludivine Bochet; Sophie Le Gonidec; Ghislaine Escourrou; Philippe Valet; Catherine Muller
Among the many different cell types surrounding breast cancer cells, the most abundant are those that compose mammary adipose tissue, mainly mature adipocytes and progenitors. New accumulating recent evidences bring the tumor-surrounding adipose tissue into the light as a key component of breast cancer progression. The purpose of this review is to emphasize the role that adipose tissue might play by locally affecting breast cancer cell behavior and subsequent clinical consequences arising from this dialog. Two particular clinical aspects are addressed: obesity that was identified as an independent negative prognostic factor in breast cancer and the oncological safety of autologous fat transfer used in reconstructive surgery for breast cancer patients. This is preceded by the overall description of adipose tissue composition and function with special emphasis on the specificity of adipose depots and the species differences, key experimental aspects that need to be taken in account when cancer is considered.
Cell Cycle | 2006
Fanny Bouquet; Catherine Muller; Bernard Salles
The induction of DNA double-strand breaks (DSBs) by genotoxic treatment leads to hightoxicity and genetic instability. Various approaches have been undertaken to quantify thenumber of breaks and to follow the kinetic of DSB repair. Recently, the phosphorylation ofthe variant histone H2AX (named γH2AX), quantified by specific immunodetectionapproaches, has provided a valuable and highly sensitive method to monitor DSBs formation.Although it is admitted that the number of γH2AX foci reflected that of DSBs, contradictoryreports leave open the question of a link between the disappearance of γH2AX signal andDSBs repair. We determined γH2AX expression (i) in cells either proficient or not in DSBsrepair capacity, (ii) after exposure to ionizing radiation (IR) or calicheamicin γ1, aradiomimetic compound, (iii) and by three different immunodetection methods, focinumbering, flow cytometry or Western blotting. We showed here that γH2AX loss correlateswith DSB repair activity only at low cytotoxic doses, when less than 100-150 DSBs breaksper genome are produced, independently of the method used. In addition, in DNA repairproficient cells, the early decrease in the number and intensity of γH2AX foci observed after a2 Gy exposure was not associated with a significant change in the global γH2AX level asdetermined by Western blotting or flow cytometry. These results suggest that thedephosphorylation step of γH2AX may be limiting and that the loss of foci is mediated notonly by γH2AX dephosphorylation but also through its redistribution towards the chromatin.
Cell Cycle | 2005
Catherine Muller; Jenny Paupert; Sylvie Monferran; Bernard Salles
The Ku heterodimer (Ku70/Ku80) plays a central role in DNA double strand break recognitionand repair. It has been shown, more than ten years ago, that Ku is also expressed at the cellsurface of different cells types along with its intra-cellular pool within the nucleus and thecytoplasm but involvement of Ku in cell-cell and cell-extracellular matrix adhesion has beenonly recently demonstrated. In addition, we have shown that Ku may have a second andunexpected activity in cell/microenvironment interaction. Indeed, Ku appears to be involved inextra-cellular proteolytic processes through its specific interaction, on the cell surface, with thematrix metalloprotease 9. Taken together, these results suggest that Ku function at the cellsurface is likely to be important in tumour invasion. Various fundamental questions arise fromthese observations. How Ku is expressed on the cell surface, why a protein with completelyunrelated functions also serve as an « integrin like »molecule once expressed at the cell surfaceand is this functional moonlighting of Ku related to cell transformation remain open issues thatwill be discussed here.
Nature Communications | 2016
Victor Laurent; Adrien Guérard; Catherine Mazerolles; Sophie Le Gonidec; Aurélie Toulet; Laurence Nieto; Falek Zaidi; Bilal Majed; David Garandeau; Youri Socrier; Muriel Golzio; Thomas Cadoudal; Karima Chaoui; Cédric Dray; Bernard Monsarrat; Odile Schiltz; Yuan Yuan Wang; Bettina Couderc; Philippe Valet; Bernard Malavaud; Catherine Muller
Obesity favours the occurrence of locally disseminated prostate cancer in the periprostatic adipose tissue (PPAT) surrounding the prostate gland. Here we show that adipocytes from PPAT support the directed migration of prostate cancer cells and that this event is strongly promoted by obesity. This process is dependent on the secretion of the chemokine CCL7 by adipocytes, which diffuses from PPAT to the peripheral zone of the prostate, stimulating the migration of CCR3 expressing tumour cells. In obesity, higher secretion of CCL7 by adipocytes facilitates extraprostatic extension. The observed increase in migration associated with obesity is totally abrogated when the CCR3/CCL7 axis is inhibited. In human prostate cancer tumours, expression of the CCR3 receptor is associated with the occurrence of aggressive disease with extended local dissemination and a higher risk of biochemical recurrence, highlighting the potential benefit of CCR3 antagonists in the treatment of prostate cancer.
Oncogene | 2002
Isabelle Ader; Catherine Muller; Jacques Bonnet; Gilles Favre; Elizabeth Cohen-Jonathan; Bernard Salles; Christine Toulas
We previously reported that overexpression of the 24 kDa basic fibroblast factor (or FGF-2) isoform provides protection from the cytotoxic effect of ionizing radiation (IR). DNA double-strand breaks (DSB), the IR-induced lethal lesions, are mainly repaired in human cells by non-homologous end joining system (NHEJ). NHEJ reaction is dependent on the DNA-PK holoenzyme (composed of a regulatory sub-unit, Ku, and a catalytic sub-unit, DNA-PKcs) that assembles at sites of DNA damage. We demonstrated here that the activity of DNA-PK was increased by twofold in two independent radioresistant cell lines, HeLa 3A and CAPAN A3, overexpressing the 24 kDa FGF-2. This increase was associated with an overexpression of the DNA-PKcs without modification of Ku expression or activity. This overexpression was due to an up-regulation of the DNA-PKcs gene transcription by the 24 kDa FGF-2 isoform. Finally, HeLa 3A cells exhibited the hallmarks of phenotypic changes associated with the overexpression of an active DNA-PKcs. Indeed, a faster repair rate of DSB and sensitization to IR by wortmannin was observed in these cells. Our results represent the characterization of a new mechanism of control of DNA repair and radioresistance in human tumor cells dependent on the overproduction of the 24 kDa FGF-2 isoform.
Biochemical and Biophysical Research Communications | 2011
Ludivine Bochet; Aline Meulle; Sandrine Imbert; Bernard Salles; Philippe Valet; Catherine Muller
Mature adipocytes are excellent candidates to influence tumor behavior through heterotypic signaling processes since these cells produce hormones, growth factors, cytokines and other molecules, a heterogeneous group of molecules named adipokines. Using a 2D coculture system, we demonstrate that breast tumor cells previously co-cultivated with mature adipocytes exhibit radioresistance and an earlier and higher increase in the effector kinase Chk1, a phenotype that was associated with decreased cell death as compared to tumor cells grown alone. Interestingly, the adipocytes-induced tumor changes taking place during the coculture time preceding the exposure to IR were sufficient to confer the radioresistant effect. Notorious among the changes brought by adipocytes was the significant increase of IL-6 expression in tumor cells, whose activity may well account for the observed tumor cell protection from IR toxicity. Indeed, our data confirmed the protective role of this cytokine as tumor cells incubated after irradiation with recombinant IL-6 exhibit an increased in Chk1 phosphorylation and a radioresistant phenotype, thus far recapitulating the effects observed in the presence of adipocytes. Our current study sheds light on a new role of tumor-surrounding adipocytes in fostering a radioresistant phenotype in breast tumors, a finding that might have important clinical implications in obese patients that frequently exhibit aggressive diseases.
Oncogene | 1997
Catherine Muller; Bernard Salles
The DNA-dependent protein kinase (DNA-PK) complex is composed of a catalytic (DNA-PKcs), and a regulatory subunit (Ku70/Ku86 heterodimer). The expression and function of DNA-PK subunits was investigated in purified blood lymphocytes obtained from patients with chronic lymphocytic leukemia (CLL) either refractory to chemotherapy or untreated. Variations in DNA-PK activity were found amongst CLL samples by comparison to human cell lines. It was noticeable that the low DNA-PK activity was associated with samples from untreated patients that exhibited a sensitivity phenotype, determined in vitro, to the radiomimetic agent neocarcinostatin by comparison to samples from refractory patients. The regulation in DNA-PK activity was associated with Ku heterodimer expression while DNA-PKcs was unaffected. Moreover, the presence of an altered form of the Ku86 subunit was identified in samples with low DNA-PK activity. These results suggest a regulation process of the DNA-PK activity in fresh human cells.
Journal of Cell Science | 2011
Fanny Bouquet; Marielle Ousset; Denis Biard; Frédérique Fallone; Stéphanie Dauvillier; Philippe Frit; Bernard Salles; Catherine Muller
DNA-dependent protein kinase (DNA-PK) is involved in DNA double-strand break (DSB) signalling and repair. We report that DNA-PK is activated by mild hypoxia conditions (0.1–1% O2) as shown by (1) its autophosphorylation on Ser2056, and (2) its mobilisation from a soluble nucleoplasmic compartment to a less extractable nuclear fraction. The recruitment of DNA-PK was not followed by activation and recruitment of the XRCC4–DNA-ligase-IV complex, suggesting that DSBs are not responsible for activation of DNA-PK. To unravel the mechanism of DNA-PK activation, we show that exposure of cells to trichostatin A, a histone deacetylase inhibitor, leads to DNA-PK autophosphorylation and relocalisation to DNA. Histone acetylation (mainly H3K14) is increased in hypoxic cells and treatment with anacardic acid, an inhibitor of histone acetyl transferase, prevented both histone modifications and DNA-PK activation in hypoxic conditions. Importantly, in using either silenced DNA-PK cells or cells exposed to a specific DNA-PK inhibitor (NU7026), we demonstrated that hypoxic DNA-PK activation positively regulates the key transcription factor HIF-1 and one subsequent target gene, GLUT1. Our results show that hypoxia initiates chromatin modification and consequently DNA-PK activation, which positively regulate cellular oxygen-sensing and oxygen-signalling pathways.
Oncogene | 1998
Catherine Muller; Caroline Dusseau; Patrick Calsou; Bernard Salles
The heterodimeric Ku protein, which comprises a 86 kDa (Ku86) amd a 70 kDa (Ku70) subunits, is an abundant nuclear DNA-binding protein which binds in vitro to DNA termini without sequence specificity. Ku is the DNA-targeting component of the large catalytic sub-unit of the DNA-dependent protein kinase complex (DNA-PKCS), that plays a critical role in mammalian double-strand break repair and lymphoid V(D)J recombination. By using electrophoretic mobility shift assays, we demonstrated that in addition to the major KuDNA complex usually detected in cell line extracts, a second complex with faster electrophoretic mobility was observed in normal peripheral blood lymphocytes (PBL) extracts. The presence of this faster migrating complex was restricted to B cells among the circulating lymphocyte population. Western blot analysis revealed that B cells express a variant form of the Ku86 protein with an apparent molecular weight of 69 kDa, and not the 86 kDa- full-length protein. Although the heterodimer Ku70/variant-Ku86 binds to DNA-ends, this altered form of the Ku heterodimer has a decreased ability to recruit the catalytic component of the complex, DNA-PKCS, which contributes to an absence of detectable DNA-PK activity in B cells. These data provide a molecular basis for the increased sensitivity of B cells to ionizing radiation and identify a new mechanism of regulation of DNA-PK activity that operates in vivo.