Catherine Papin
National Institute for Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Catherine Papin.
Nature | 2010
Christel Rouget; Catherine Papin; Anthony Boureux; Anne-Cécile Meunier; Bénédicte Franco; Nicolas Robine; Eric C. Lai; Alain Pelisson; Martine Simonelig
Piwi-associated RNAs (piRNAs), a specific class of 24- to 30-nucleotide-long RNAs produced by the Piwi-type of Argonaute proteins, have a specific germline function in repressing transposable elements. This repression is thought to involve heterochromatin formation and transcriptional and post-transcriptional silencing. The piRNA pathway has other essential functions in germline stem cell maintenance and in maintaining germline DNA integrity. Here we uncover an unexpected function of the piRNA pathway in the decay of maternal messenger RNAs and in translational repression in the early embryo. A subset of maternal mRNAs is degraded in the embryo at the maternal-to-zygotic transition. In Drosophila, maternal mRNA degradation depends on the RNA-binding protein Smaug and the deadenylase CCR4, as well as the zygotic expression of a microRNA cluster. Using mRNA encoding the embryonic posterior morphogen Nanos (Nos) as a paradigm to study maternal mRNA decay, we found that CCR4-mediated deadenylation of nos depends on components of the piRNA pathway including piRNAs complementary to a specific region in the nos 3′ untranslated region. Reduced deadenylation when piRNA-induced regulation is impaired correlates with nos mRNA stabilization and translational derepression in the embryo, resulting in head development defects. Aubergine, one of the Argonaute proteins in the piRNA pathway, is present in a complex with Smaug, CCR4, nos mRNA and piRNAs that target the nos 3′ untranslated region, in the bulk of the embryo. We propose that piRNAs and their associated proteins act together with Smaug to recruit the CCR4 deadenylation complex to specific mRNAs, thus promoting their decay. Because the piRNAs involved in this regulation are produced from transposable elements, this identifies a direct developmental function for transposable elements in the regulation of gene expression.
Development | 2008
Perrine Benoit; Catherine Papin; Jae Eun Kwak; Marvin Wickens; Martine Simonelig
Cytoplasmic polyadenylation has an essential role in activating maternal mRNA translation during early development. In vertebrates, the reaction requires CPEB, an RNA-binding protein and the poly(A) polymerase GLD-2. GLD-2-type poly(A) polymerases form a family clearly distinguishable from canonical poly(A) polymerases (PAPs). In Drosophila, canonical PAP is involved in cytoplasmic polyadenylation with Orb, the Drosophila CPEB, during mid-oogenesis. We show that the female germline GLD-2 is encoded by wispy. Wispy acts as a poly(A) polymerase in a tethering assay and in vivo for cytoplasmic polyadenylation of specific mRNA targets during late oogenesis and early embryogenesis. wispy function is required at the final stage of oogenesis for metaphase of meiosis I arrest and for progression beyond this stage. By contrast, canonical PAP acts with Orb for the earliest steps of oogenesis. Both Wispy and PAP interact with Orb genetically and physically in an ovarian complex. We conclude that two distinct poly(A) polymerases have a role in cytoplasmic polyadenylation in the female germline, each of them being specifically required for different steps of oogenesis.
Mechanisms of Development | 2000
Leo A. van Grunsven; Catherine Papin; Bernard Avalosse; Karin Opdecamp; Danny Huylebroeck; James C. Smith; Eric Bellefroid
We have isolated a Xenopus homologue of the zinc finger/homeodomain-containing transcriptional repressor Smad-interacting protein-1 (SIP1) from mouse. XSIP1 is activated at the early gastrula stage and transcription occurs throughout embryogenesis. At the beginning of gastrulation, XSIP1 is strongly expressed in prospective neurectoderm. At the neurula stage, XSIP1 is highly expressed within the neural plate but weakly in the dorsal midline. At later stages of development transcripts are detected primarily within the neural tube and neural crest. In the adult, XSIP1 expression is detected at variable levels in several organs.
Mechanisms of Development | 2002
Catherine Papin; Leo A. van Grunsven; Kristin Verschueren; Danny Huylebroeck; James C. Smith
Xenopus Brachyury (Xbra) plays a key role in mesoderm formation during early development. One factor thought to be involved in the regulation of Xbra is XSIP1, a zinc finger/homeodomain-like DNA-binding protein that belongs to the deltaEF1 family of transcriptional repressors. We show here that Xbra and XSIP1 are co-expressed at the onset of gastrulation, but that expression subsequently refines such that Xbra is expressed in prospective mesoderm and XSIP1 in anterior neurectoderm. This refinement of the expression patterns of the two genes is due in part to the ability of XSIP1 to repress expression of Xbra. This repression is highly specific, in the sense that XSIP1 does not repress the expression of other regionally expressed genes in the early embryo, and that other members of the family to which XSIP1 belongs, such as deltaEF1 and its Xenopus homologue ZEB, cannot regulate Xbra expression. The function of XSIP1 was studied further by making an interfering construct comprising the open reading frame of XSIP1 fused to the VP16 transactivation domain. Experiments using this chimeric protein suggest that XSIP1 is required for normal gastrulation movements to occur and for the development of the anterior neural plate.
Cell Reports | 2015
Bridlin Barckmann; Stéphanie Pierson; Jérémy Dufourt; Catherine Papin; Claudia Armenise; Fillip Port; Thomas Grentzinger; Séverine Chambeyron; Grégory Baronian; Jean-Pierre Desvignes; Tomaz Curk; Martine Simonelig
Summary The Piwi-interacting RNA (piRNA) pathway plays an essential role in the repression of transposons in the germline. Other functions of piRNAs such as post-transcriptional regulation of mRNAs are now emerging. Here, we perform iCLIP with the PIWI protein Aubergine (Aub) and identify hundreds of maternal mRNAs interacting with Aub in the early Drosophila embryo. Gene expression profiling reveals that a proportion of these mRNAs undergo Aub-dependent destabilization during the maternal-to-zygotic transition. Strikingly, Aub-dependent unstable mRNAs encode germ cell determinants. iCLIP with an Aub mutant that is unable to bind piRNAs confirms piRNA-dependent binding of Aub to mRNAs. Base pairing between piRNAs and mRNAs can induce mRNA cleavage and decay that are essential for embryonic development. These results suggest general regulation of maternal mRNAs by Aub and piRNAs, which plays a key developmental role in the embryo through decay and localization of mRNAs encoding germ cell determinants.
Development | 2003
Margarida Trindade; Nigel Messenger; Catherine Papin; Donna Grimmer; Lynne Fairclough; Masazumi Tada; James C. Smith
Members of the Bix family of homeobox-containing genes are expressed in the vegetal hemisphere of the Xenopus embryo at the early gastrula stage. Misexpression of at least some of the family members causes activation of mesoderm- and endoderm-specific genes and it is known that some of the proteins, including Bix2 and Bix3, interact with Smad proteins via a motif that is also present in the related protein Mixer. In this paper we study the function of Bix3. Misexpression of Bix3, similar to misexpression of other members of the Bix family, causes the activation of a range of mesendodermal genes, but the spectrum of genes induced by Bix3 differs from that induced by Bix1. More significantly, we find that overexpression of Bix3 also causes apoptosis, as does depletion of Bix3 by use of antisense morpholino oligonucleotides. The ability of Bix3 to causes apoptosis is not associated with its ability to activate transcription and nor with its possession of a Smad interaction motif. Rather, Bix3 lacks a C-terminal motif, which, in Bix1, acts in cis to inhibit apoptosis. Mutation of this sequence in Bix1 causes the protein to acquire apoptosis-inducing activity.
Journal of Biological Chemistry | 2006
Christel Rouget; Catherine Papin; Elisabeth Mandart
Regulated mRNA translation is a hallmark of oocytes and early embryos, of which cytoplasmic polyadenylation is a major mechanism. This process involves multiple protein components, including the CPSF (cleavage and polyadenylation specificity factor), which is also required for nuclear polyadenylation. The CstF (cleavage stimulatory factor), with CPSF, is required for the pre-mRNA cleavage before nuclear polyadenylation. However, some evidence suggests that the CstF-77 subunit might have a function independent of nuclear polyadenylation, which could be related to the cell cycle. As such, we addressed the question whether CstF-77 might have a role in cytoplasmic polyadenylation. We investigated the function of the CstF-77 protein in Xenopus oocytes, and show that CstF-77 has indeed a role in the cytoplasm. The Xenopus CstF-77 protein (X77K) localizes mainly to the nucleus, but also in punctuate cytoplasmic foci. We show that X77K resides in a cytoplasmic complex with eIF4E, CPEB (cytoplasmic polyadenylation element-binding protein), CPSF-100 and XGLD2, but is not required for cytoplasmic polyadenylation per se. Impairment of X77K function in ovo leads to an acceleration of the G2/M transition, with a premature synthesis of Mos and AuroraA proteins. However, the kinetic of Mos mRNA polyadenylation is not modified. Furthermore, X77K represses mRNA translation in vitro. These results suggest that X77K could be involved in masking of mRNA prior to polyadenylation.
Developmental Biology | 2000
Catherine Papin; James C. Smith
Developmental Biology | 2004
Catherine Papin; Christel Rouget; Thierry Lorca; Anna Castro; Elisabeth Mandart
M S-medecine Sciences | 2011
Catherine Papin; Martine Simonelig