Catherine Perrin
University of Montpellier
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Catherine Perrin.
Journal of Chromatography A | 2003
R. Put; Catherine Perrin; F. Questier; Danny Coomans; D.L. Massart; Y. Vander Heyden
The use of the classification and regression tree (CART) methodology was studied in a quantitative structure-retention relationship (QSRR) context on a data set consisting of the retentions of 83 structurally diverse drugs on a Unisphere PBD column, using isocratic elutions at pH 11.7. The response (dependent variable) in the tree models consisted of the predicted rention factor (log kw) of the solutes, while a set of 266 molecular descriptors was used as explanatory variables in the tree building. Molecular descriptors related to the hydrophobicity (log P and Hy) and the size (TPC) of the molecules were selected out of these 266 descriptors in order to describe and predict retention. Besides the above mentioned, CART was also able to select hydrogen-bonding and molecular complexity descriptors. Since these variables are expected from QSRR knowledge, it demonstrates the potential of CART as a methodology to understand retention in chromatographic systems. The potential of CART to predict retention and thus occasionally to select an appropriate system for a given mixture was also evaluated. Reasonably good prediction, i.e. only 9% serious misclassification, was observed. Moreover, some of the misclassifications probably are inherent to the data set applied.
Electrophoresis | 2008
Reine Nehmé; Catherine Perrin; Hervé Cottet; Marie Dominique Blanchin; Huguette Fabre
Polyelectrolytes are widely used in capillary electrophoresis as coating agents of silica capillaries to prevent adsorption phenomena and improve the repeatability of peptide and protein analysis. A systematic study of the coating experimental conditions has been carried out to optimize coating stability and performance. The main experimental parameters studied were the type and concentration of polyelectrolytes used in several monolayer and multilayer coatings, the ionic strength of coating and stabilizing solutions, and the procedures used for coating and capillary storage. Electroosmotic flow magnitude, direction and repeatability were used to monitor coating stability. Coating ability to limit adsorption was investigated by monitoring variations of migration times, time‐corrected peak areas and separation efficiency of test peptides. Capillary‐to‐capillary and batch‐to‐batch reproducibility was also studied. In addition, the separation performance of polyelectrolyte coatings were compared to those obtained with bare silica capillaries.
Electrophoresis | 2009
Reine Nehmé; Catherine Perrin; Hervé Cottet; Marie-Dominique Blanchin; Huguette Fabre
CE of biomolecules is limited by analyte adsorption on the capillary wall. To prevent this, monolayer or successive multiple ionic‐polymer layers (SMILs) of highly charged polyelectrolytes can be physically adsorbed on the inner capillary surface. Although these coatings have become commonly used in CE, no systematic investigation of their performance under different coating conditions has been carried out so far. In a previous study (Nehmé, R., Perrin, C., Cottet, H., Blanchin, M. D., Fabre, H., Electrophoresis 2008, 29, 3013–3023), we investigated the influence of different experimental parameters on coating stability, repeatability and peptide peak efficiency. Optimal coating conditions for monolayer and multilayer (SMILs) poly(diallyldimethylammonium) chloride/ poly(sodium 4‐styrenesulfonate) coated capillaries were determined. In this study, the influence of polyelectrolyte concentration and ionic strength of the coating solutions, and the number of coating layers on coating stability and performance in limiting protein adsorption was carried out. EOF magnitude and repeatability were used to monitor coating stability. Coating ability to limit protein adsorption was investigated by monitoring variations of migration times, time‐corrected peak areas and separation efficiency of test proteins. The separation performance of polyelectrolyte coatings were compared with those obtained with bare silica capillaries.
Electrophoresis | 2009
Reine Nehmé; Catherine Perrin; Vincent Guerlavais; Jean-Alain Fehrentz; Hervé Cottet; Jean Martinez; Huguette Fabre
The diastereoisomeric separation of peptidomimetics of hexarelin, a strong growth hormone secretagogue, in CE has been studied. Highly sulfated‐γ‐CD was found to be an appropriate selector for the separation of the stereoisomers. However, non‐repeatable analyses were obtained on bare fused silica capillary due to the progressive adsorption of the analytes on the capillary wall. Two types of polyelectrolyte coating agents were tested to prevent this phenomenon. Coating with neutral polyethylene oxide was found to be efficient but resulted in a very long analysis time (about 40 min). Coating with cationic poly(diallyldimethylammonium) chloride was found both to prevent analyte adsorption, reduce analysis time and alter separation selectivity. EOF measurement revealed that the highly sulfated‐γ‐CDs were strongly adsorbed on the poly(diallyldimethylammonium) chloride coating surface yielding a stable strong cathodic EOF, which considerably reduced analysis time (about 12 min). Very good repeatability of analysis was obtained (RSDmigration time<1%).
Journal of Chromatography A | 2011
Reine Nehmé; Catherine Perrin; Hervé Cottet; Marie-Dominique Blanchin; Huguette Fabre
The stability of capillaries coated with highly charged polyelectrolytes under various analytical conditions was studied, as well as their performance for the analysis of proteins by Capillary Electrophoreis (CE) over a wide range of pH (2.5-9.3). In this study, fused silica capillaries were modified either with a poly(diallyldimethylammonium) chloride (PDADMAC) monolayer or PDADMAC/poly(sodium 4-styrenesulfonate) (PSS) multilayer coatings, using optimal coating conditions previously determined. Results show that the coated capillaries are remarkably stable and efficient to limit protein adsorption under a variety of extreme electrophoretic conditions even in the absence of the coating agent in the background electrolyte which is exceptional for non-covalent coatings. Monolayer coated capillaries were demonstrated for the first time to be stable to acidic rinses and to organic solvents which proves that the stability of the capillaries is highly dependent on the coating procedure used. In addition, PDADMAC/PSS multilayer coatings were found to be stable to alkaline treatments. PDADMAC/PSS coated capillaries gave excellent performances for the analysis of proteins covering a large range of pI (4-11) and of molecular weight (14-65 kDa) over a wide pH range (i.e. 2.5-9.3). Even at high pH 9.3, protein analysis was possible with very good repeatabilities (RSD(tm)<1% and RSD(CPA)<2.6% (n ≥ 8)) and high peak efficiencies in the order of 700,000.
Advances in Colloid and Interface Science | 2016
Magalie Manaargadoo-Catin; Anaïs Ali-Cherif; Jean-Luc Pougnas; Catherine Perrin
An overview of the use of surfactants for erythrocyte lysis and their cell membrane action mechanisms is given. Erythrocyte membrane characteristics and its association with the cell cytoskeleton are presented in order to complete understanding of the erythrocyte membrane distortion. Cell homeostasis disturbances caused by surfactants might induce changes starting from shape modification to cell lysis. Two main mechanisms are hypothesized in literature which are osmotic lysis and lysis by solubilization even if the boundary between them is not clearly defined. Another specific mechanism based on the formation of membrane pores is suggested in the particular case of saponins. The lytic potency of a surfactant is related to its affinity for the membrane and the modification of the lipid membrane curvature. This is to be related to the surfactant shape defined by its hydrophobic and hydrophilic moieties but also by experimental conditions. As a consequence, prediction of the hemolytic potency of a given surfactant is challenging. Several studies are focused on the relation between surfactant erythrolytic potency and their physico-chemical parameters such as the critical micellar concentration (CMC), the hydrophile-lipophile balance (HLB), the surfactant membrane/water partition coefficient (K) or the packing parameter (P). The CMC is one of the most important factors considered even if a lytic activity cut-off effect points out that the only consideration of CMC not enough predictive. The relation K.CMC must be considered in addition to the CMC to predict the surfactant lytic capacity within the same family of non ionic surfactant. Those surfactant structure/lytic activity studies demonstrate the requirement to take into account a combination of physico-chemical parameters to understand and foresee surfactant lytic potency.
Electrophoresis | 2011
Stuart A. Allison; Catherine Perrin; Hervé Cottet
CE is used to measure the electrophoretic mobility of low molecular mass oligo‐L‐lysines (n=1–8) in aqueous LiH2PO4 buffer, BGE, at pH 2.5 over a range of temperatures (25–50°C) and ionic strengths (10–100 mM). Mobilities are corrected for Joule heating and under the conditions of the experiment, interaction of the peptides with the capillary walls can be ignored. A “coarse grained” bead modeling methodology (BMM) (H. Pei et al., J. Chromatogr. A 2009, 1216, 1908–1916) is used to model the mobilities. This model partially accounts for peptide conformation as well as the assumed form of its secondary structure. For highly charged oligolysines, it is necessary to properly account for the relaxation effect. In the present study, the BMM approach tends to overestimate oligolysine mobility and that effect tends to increase with increasing ionic strength and peptide length. It is proposed that association between the oligolysines and buffer components (H2PO4− in this case) that go beyond classical electrostatic interactions are responsible for this discrepancy. A simple binding model is introduced that illustrates how this association can reconcile model and experiment.
Methods of Molecular Biology | 2013
Reine Nehmé; Catherine Perrin
Capillary electrophoresis (CE) is an interesting technique for protein and peptide analysis. However, one of the major problems concerns sample adsorption on the internal capillary wall. The use of non-covalent coatings using highly charged polyelectrolytes is an efficient, simple, and fast approach to reduce peptide and protein adsorption phenomena. We have studied in a systematic manner the effect of coating conditions on the stability and efficiency of multilayer coatings using poly(diallyldimethylammonium) chloride (PDADMAC) as polycation and polystyrene sulfonate (PSS) as polyanion. When optimal conditions defined in the protocols are used, very stable coatings are obtained and adsorption phenomena are eliminated. The coatings are stable over a large range of pH buffer (2-10) and in the presence of organic solvent. Hundreds of analyses can be performed without coating regeneration. Coated capillaries can be easily stored and reused.
Separation Science and Technology | 2005
Y. Vander Heyden; Debby Mangelings; N Matthijs; Catherine Perrin
The chiral separation of drug molecules and of their precursors, in the case of the synthesis of enantiomerically pure drugs, is one of the important application areas of HPLC in pharmaceutical analysis. Besides HPLC, capillary electrophoresis is another technique of choice for chiral separations. In this chapter we give an overview of the different modes (e.g., direct and indirect ones) by which it is possible to obtain a chiral separation in HPLC and CE. The direct approaches, i.e., those where the compound of interest is not derivatized prior to separation, are discussed in more detail since they are the most frequently used approaches nowadays. The latter approaches require the use of so-called chiral selectors to enable enantioselective recognition and enantiomeric separation. Many different molecules have been used as chiral selectors, both in HPLC and CE. They can be classified into three selectors, and iii) macromolecular selectors. The different classes are discussed, including their subclasses, while examples of chiral separations obtained with them are given. Finally, some practical guidelines about screening conditions to test the enantioselectivity of a given compound on a limited number of chromatographic systems, and about method optimization when an initial separation has already been obtained, are given briefly.
Journal of Chromatography A | 2004
N Matthijs; Catherine Perrin; Mohamed Maftouh; D.L. Massart; Y. Vander Heyden