Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine Rehder is active.

Publication


Featured researches published by Catherine Rehder.


Nature Genetics | 2011

A copy number variation morbidity map of developmental delay

Gregory M. Cooper; Bradley P. Coe; Santhosh Girirajan; Jill A. Rosenfeld; Tiffany H. Vu; Carl Baker; Charles A. Williams; Heather J. Stalker; Rizwan Hamid; Vickie Hannig; Hoda Abdel-Hamid; Patricia I. Bader; Elizabeth McCracken; Dmitriy Niyazov; Kathleen A. Leppig; Heidi Thiese; Marybeth Hummel; Nora Alexander; Jerome L. Gorski; Jennifer Kussmann; Vandana Shashi; Krys Johnson; Catherine Rehder; Blake C. Ballif; Lisa G. Shaffer; Evan E. Eichler

To understand the genetic heterogeneity underlying developmental delay, we compared copy number variants (CNVs) in 15,767 children with intellectual disability and various congenital defects (cases) to CNVs in 8,329 unaffected adult controls. We estimate that ∼14.2% of disease in these children is caused by CNVs >400 kb. We observed a greater enrichment of CNVs in individuals with craniofacial anomalies and cardiovascular defects compared to those with epilepsy or autism. We identified 59 pathogenic CNVs, including 14 new or previously weakly supported candidates, refined the critical interval for several genomic disorders, such as the 17q21.31 microdeletion syndrome, and identified 940 candidate dosage-sensitive genes. We also developed methods to opportunistically discover small, disruptive CNVs within the large and growing diagnostic array datasets. This evolving CNV morbidity map, combined with exome and genome sequencing, will be critical for deciphering the genetic basis of developmental delay, intellectual disability and autism spectrum disorders.


Journal of Biological Chemistry | 2002

Adriamycin-induced Senescence in Breast Tumor Cells Involves Functional p53 and Telomere Dysfunction

Lynne W. Elmore; Catherine Rehder; Xu Di; Patricia A. McChesney; Colleen Jackson-Cook; David A. Gewirtz; Shawn E. Holt

Direct experimental evidence implicates telomere erosion as a primary cause of cellular senescence. Using a well characterized model system for breast cancer, we define here the molecular and cellular consequences of adriamycin treatment in breast tumor cells. Cells acutely exposed to adriamycin exhibited an increase in p53 activity, a decline in telomerase activity, and a dramatic increase in β-galactosidase, a marker of senescence. Inactivation of wild-type p53 resulted in a transition of the cellular response to adriamycin treatment from replicative senescence to delayed apoptosis, demonstrating that p53 plays an integral role in the fate of breast tumor cells treated with DNA-damaging agents. Stable introduction of hTERT, the catalytic protein component of telomerase, into MCF-7 cells caused an increase in telomerase activity and telomere length. Treatment of MCF-7-hTERT cells with adriamycin produced an identical senescence response as controls without signs of telomere shortening, indicating that the senescence after treatment is telomere length-independent. However, we found that exposure to adriamycin resulted in an overrepresentation of cytogenetic changes involving telomeres, showing an altered telomere state induced by adriamycin is probably a causal factor leading to the senescence phenotype. To our knowledge, these data are the first to demonstrate that the mechanism of adriamycin-induced senescence is dependent on both functional p53 and telomere dysfunction rather than overall shortening.


PLOS ONE | 2013

Algorithm for the early diagnosis and treatment of patients with cross reactive immunologic material-negative classic infantile pompe disease: a step towards improving the efficacy of ERT.

Suhrad G. Banugaria; Sean N. Prater; Trusha T. Patel; Stephanie DeArmey; Christie Milleson; Kathryn B. Sheets; Deeksha Bali; Catherine Rehder; Julian Raiman; Raymond A. Wang; F. Labarthe; Joel Charrow; Paul Harmatz; Pranesh Chakraborty; Amy S. Rosenberg; Priya S. Kishnani

Objective Although enzyme replacement therapy (ERT) is a highly effective therapy, CRIM-negative (CN) infantile Pompe disease (IPD) patients typically mount a strong immune response which abrogates the efficacy of ERT, resulting in clinical decline and death. This study was designed to demonstrate that immune tolerance induction (ITI) prevents or diminishes the development of antibody titers, resulting in a better clinical outcome compared to CN IPD patients treated with ERT monotherapy. Methods We evaluated the safety, efficacy and feasibility of a clinical algorithm designed to accurately identify CN IPD patients and minimize delays between CRIM status determination and initiation of an ITI regimen (combination of rituximab, methotrexate and IVIG) concurrent with ERT. Clinical and laboratory data including measures of efficacy analysis for response to ERT were analyzed and compared to CN IPD patients treated with ERT monotherapy. Results Seven CN IPD patients were identified and started on the ITI regimen concurrent with ERT. Median time from diagnosis of CN status to commencement of ERT and ITI was 0.5 months (range: 0.1–1.6 months). At baseline, all patients had significant cardiomyopathy and all but one required respiratory support. The ITI regimen was safely tolerated in all seven cases. Four patients never seroconverted and remained antibody-free. One patient died from respiratory failure. Two patients required another course of the ITI regimen. In addition to their clinical improvement, the antibody titers observed in these patients were much lower than those seen in ERT monotherapy treated CN patients. Conclusions The ITI regimen appears safe and efficacious and holds promise in altering the natural history of CN IPD by increasing ERT efficacy. An algorithm such as this substantiates the benefits of accelerated diagnosis and management of CN IPD patients, thus, further supporting the importance of early identification and treatment initiation with newborn screening for IPD.


American Journal of Clinical Pathology | 2011

Donor Cell-Derived Leukemias/Myelodysplastic Neoplasms in Allogeneic Hematopoietic Stem Cell Transplant Recipients A Clinicopathologic Study of 10 Cases and a Comprehensive Review of the Literature

Endi Wang; Charles Blake Hutchinson; Qin Huang; Chuanyi Mark Lu; Jennifer Crow; Frances Wang; Siby Sebastian; Catherine Rehder; Anand S. Lagoo; Mitchell E. Horwitz; David A. Rizzieri; Jingwei Yu; Barbara K. Goodman; Michael B. Datto; Patrick J. Buckley

We report 10 cases of donor cell leukemia (DCL). All cases except the case of chronic lymphocytic leukemia had anemia, neutropenia, and/or thrombocytopenia when DCL was diagnosed. Eight cases with sex-mismatched hematopoietic stem cell transplant (HCT) showed donor gonosomal complements, suggesting DCL. Clonal cytogenetic abnormalities were detected in 8 cases: 6 were monosomy 7/del(7q). In all 10 cases, engraftment studies confirmed donor cell origin. Retrospective fluorescence in situ hybridization in archived donor cells in 4 cases showed a low level of abnormalities in 2. Of 7 patients with clinical follow-up of 5 months or more, 1 (with acute myeloid leukemia) died of disease; 6 are alive, including 1 with myelodysplastic syndrome with spontaneous remission. Similar to reported cases, we found disproportional sex-mismatched HCTs, suggesting probable underdetection of DCL in sex-matched HCTs. The latency between HCT and DCL ranged from 1 to 193 months (median, 24 months), in keeping with the literature. Analyzing our cases, pooled with reported cases, with survival models showed much shorter latency for malignancy as primary disease, for T-cell large granular lymphocyte leukemia as type of DCL, and for umbilical cord blood as stem cell source.


Mechanisms of Ageing and Development | 2004

Human chromosomes with shorter telomeres and large heterochromatin regions have a higher frequency of acquired somatic cell aneuploidy.

Natalia T. Leach; Catherine Rehder; Keith O. Jensen; Shawn E. Holt; Colleen Jackson-Cook

Both telomere shortening and increases in aneuploidy frequencies have been associated with aging. To test if these chromosomal attributes are correlated, chromosome-specific telomere lengths and aneuploidy frequencies were estimated and compared. Aneuploidy frequencies were determined for 10 autosomes (1, 3, 5, 8, 9, 10, 13, 16, 17, 21) and the X chromosome in lymphocytes, and for chromosomes 17 and X in buccal mucosa cells. Overall, chromosomal loss was seen more often than gain in lymphocytes, with the highest loss rates being observed for chromosomes X (3.03%), 17 (2.00%), and the autosomes having large blocks of heterochromatin (1 [1.93%]; 16 [1.53%]; and 9 [1.05%]). The frequencies of loss were significantly lower in the buccal mucosa cells compared to lymphocytes for chromosomes 17 (P = 0.006) and X (P = 0.003). However, the chromosome 17 trisomy frequencies did not vary between tissues. Using a semi-quantitative FISH assay to estimate chromosome-specific telomere length, a significant negative correlation (r = -0.379; P = 0.007) was seen for chromosomal aneuploidy and telomere length, with chromosomes having higher loss rates being noted to have shorter telomeres. Collectively, these studies show that acquired, spontaneous chromosomal loss is associated with multiple factors including the amount of heterochromatin, the chromosomes telomere length, and tissue-specific factors.


American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2012

Assessing disease severity in Pompe disease: the roles of a urinary glucose tetrasaccharide biomarker and imaging techniques.

Sarah P. Young; Monique Piraud; Jennifer L. Goldstein; Haoyue Zhang; Catherine Rehder; P. Laforêt; Priya S. Kishnani; David S. Millington; Mustafa R. Bashir; Deeksha Bali

Defining disease severity in patients with Pompe disease is important for prognosis and monitoring the response to therapies. Current approaches include qualitative and quantitative assessments of the disease burden, and clinical measures of the impact of the disease on affected systems. The aims of this manuscript were to review a noninvasive urinary glucose tetrasaccharide biomarker of glycogen storage, and to discuss advances in imaging techniques for determining the disease burden in Pompe disease. The glucose tetrasaccharide, Glcα1‐6Glcα1‐4Glcα1‐4Glc (Glc4), is a glycogen‐derived limit dextrin that correlates with the extent of glycogen accumulation in skeletal muscle. As such, it is more useful than traditional biomarkers of tissue damage, such as CK and AST, for monitoring the response to enzyme replacement therapy in patients with Pompe disease. Glc4 is also useful as an adjunctive diagnostic test for Pompe disease when performed in conjunction with acid alpha‐glucosidase activity measurements. Review of clinical records of 208 patients evaluated for Pompe disease by this approach showed Glc4 had 94% sensitivity and 84% specificity for Pompe disease. We propose Glc4 is useful as an overall measure of disease burden, but does not provide information on the location and distribution of excess glycogen accumulation. In this manuscript we also review magnetic resonance spectroscopy and imaging techniques as alternative, noninvasive tools for quantifying glycogen and detailing changes, such as fibrofatty muscle degeneration, in specific muscle groups in Pompe disease. These techniques show promise as a means of monitoring disease progression and the response to treatment in Pompe disease.


Clinical Genetics | 2016

Practical considerations in the clinical application of whole-exome sequencing

Vandana Shashi; Allyn McConkie-Rosell; Kelly Schoch; V. Kasturi; Catherine Rehder; Yong-hui Jiang; David B. Goldstein; Marie McDonald

Despite the exciting advent of whole‐exome sequencing (WES) in medical genetics practices, the optimal interpretation of results requires further actions such as reconsidering clinical information and obtaining further laboratory testing. There are no published data to guide clinicians in this process. In a retrospective study on 93 patients who underwent clinical WES, we set out to assess and resolve these practical challenges. With the laboratories reporting a molecular diagnostic rate of 25.8%, the medical geneticists and the laboratories were 90% concordant in their interpretation of the WES results. Divergence occurred when the medical geneticist reconsidered clinical information and/or additional information regarding pathogenicity of a variant. Variants of uncertain significance were reported in 86% of patients, with 53.7% needing follow‐up, such as additional laboratory tests and genotyping of family members. By layering clinical data (e.g. mode of inheritance and phenotypic fit) on to the laboratory results, we developed clinical categories for the WES results. These categories of definite diagnosis (14/93), likely diagnosis (8/93), possible diagnosis (13/93) and no diagnosis (58/93) could be used to convey results to patients uniformly. Our framework for a clinically informed interpretation of the results enhances the utility of WES within medical genetics practices.


Genetics in Medicine | 2010

Molecular analysis of the AGL gene: identification of 25 novel mutations and evidence of genetic heterogeneity in patients with Glycogen Storage Disease Type III.

Jennifer L. Goldstein; Stephanie Austin; Keri Boyette; Angela Kanaly; Aravind Veerapandiyan; Catherine Rehder; Priya S. Kishnani; Deeksha Bali

Purpose: Glycogen Storage Disease Type III (limit dextrinosis; Cori or Forbes disease) is an autosomal recessive disorder of glycogen metabolism caused by deficient activity of glycogen debranching enzyme in liver and muscle (Glycogen Storage Disease Type IIIa) or liver only (Glycogen Storage Disease Type IIIb). These two clinically distinct phenotypes are caused by mutations in the same gene (amylo-1,6-glucosidase or AGL). Although most patients with Glycogen Storage Disease Type III have private mutations, common mutations have been identified in some populations, and two specific mutations in exon 3, c.18_19delGA (p.Gln6HisfsX20) and c.16C>T (p.Gln6X), are associated with the Glycogen Storage Disease Type IIIb phenotype.Methods: To further examine the heterogeneity found in Glycogen Storage Disease Type III patients, we have sequenced the AGL gene in 34 patients with a clinically and/or biochemically confirmed diagnosis of Glycogen Storage Disease Type III.Results: We have identified 38 different mutations (25 novel and 13 previously reported) and have compiled a list of all mutations previously reported in the literature.Discussion: We conclude that Glycogen Storage Disease Type III is a highly heterogeneous disorder usually requiring full gene sequencing to identify both pathogenic mutations. The finding of at least one of the two exon 3 mutations in all of the Glycogen Storage Disease Type IIIb patients tested allows for diagnosis of this subtype without the need for a muscle biopsy.


Genetics in Medicine | 2015

CRIM-negative infantile Pompe disease: characterization of immune responses in patients treated with ERT monotherapy

Kathryn L. Berrier; Zoheb B. Kazi; Sean N. Prater; Deeksha Bali; Jennifer L. Goldstein; Mihaela Stefanescu; Catherine Rehder; Eleanor G. Botha; Carolyn Ellaway; Kaustuv Bhattacharya; Anna Tylki-Szymańska; Nesrin Karabul; Amy S. Rosenburg; Priya S. Kishnani

Purpose:Enzyme replacement therapy (ERT) with recombinant human acid α-glucosidase (rhGAA) prolongs survival in infantile Pompe disease (IPD). However, the majority of cross-reactive immunologic material (CRIM)–negative (CN) patients have immune responses with significant clinical decline despite continued ERT. We aimed to characterize immune responses in CN patients with IPD receiving ERT monotherapy.Methods:A chart review identified 20 CN patients with IPD treated with ERT monotherapy for ≥6 months. Patients were stratified by anti-rhGAA antibody titers: high sustained antibody titers (HSAT; ≥51,200) at least twice; low titers (LT; <6,400) throughout treatment; or sustained intermediate titers (SIT; 6,400–25,600).Results:Despite early initiation of treatment, the majority (85%) of CN patients developed significant antibody titers, most with HSAT associated with invasive ventilation and death. Nearly all patients with HSAT had at least one nonsense GAA mutation, whereas the LT group exclusively carried splice-site or frameshift mutations. Only one patient in the HSAT group is currently alive after successful immune modulation in the entrenched setting.Conclusion:Immunological responses are a significant risk in CN IPD; thus induction of immune tolerance in the naive setting should strongly be considered. Further exploration of factors influencing immune responses is required, particularly with the advent of newborn screening for Pompe disease.Genet Med 17 11, 912–918.


American Journal of Clinical Pathology | 2011

Pseudo-Pelger-Huët anomaly induced by medications: a clinicopathologic study in comparison with myelodysplastic syndrome-related pseudo-Pelger-Huët anomaly.

Endi Wang; Elizabeth L. Boswell; Imran N. Siddiqi; Chuanyi Mark Lu; Siby Sebastian; Catherine Rehder; Qin Huang

Pseudo-Pelger-Huët anomaly (PPHA) has been documented in association with transplant medications and other drugs. This iatrogenic neutrophilic dysplasia is reversible with cessation or adjustment of medications but is frequently confused with myelodysplastic syndrome (MDS) based on the conventional concept that PPHA is a marker for dysplasia. We investigated the clinicopathologic features in iatrogenic PPHA and compared them with MDS-related PPHA. The 13 cases studied included 5 bone marrow/stem cell transplantations, 3 solid organ transplantations, 1 autoimmune disease, 3 chronic lymphocytic leukemias, and 1 breast carcinoma. For 12 cases, there was follow-up evaluation, and all demonstrated at least transient normalization of neutrophilic segmentation. All 9 cases of MDS demonstrated at least 2 of the following pathologic abnormalities on bone marrow biopsy: hypercellularity (8/9), morphologic dysplasia (8/9), clonal cytogenetic abnormality (7/9), and increased blasts (3/9), whereas these abnormalities were typically absent in iatrogenic PPHA. Iatrogenic PPHA displayed a higher proportion of circulating PPHA cells than in MDS (mean, 47.4%; SD, 31.6% vs mean, 12.3%; SD, 9.8; P < .01). A diagnostic algorithm is proposed in which isolated PPHA is indicative of transient or benign PPHA unless proven otherwise.

Collaboration


Dive into the Catherine Rehder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qin Huang

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge