Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine Robbe-Masselot is active.

Publication


Featured researches published by Catherine Robbe-Masselot.


BMC Biology | 2013

Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent

Laura Wrzosek; Sylvie Miquel; Marie-Louise Noordine; Stephan Bouet; Marie Joncquel Chevalier-Curt; Véronique Robert; Catherine Philippe; Chantal Bridonneau; Claire Cherbuy; Catherine Robbe-Masselot; Philippe Langella; Muriel Thomas

BackgroundThe intestinal mucus layer plays a key role in the maintenance of host-microbiota homeostasis. To document the crosstalk between the host and microbiota, we used gnotobiotic models to study the influence of two major commensal bacteria, Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii, on this intestinal mucus layer. B. thetaiotaomicron is known to use polysaccharides from mucus, but its effect on goblet cells has not been addressed so far. F. prausnitzii is of particular physiological importance because it can be considered as a sensor and a marker of human health. We determined whether B. thetaiotaomicron affected goblet cell differentiation, mucin synthesis and glycosylation in the colonic epithelium. We then investigated how F. prausnitzii influenced the colonic epithelial responses to B. thetaiotaomicron.ResultsB. thetaiotaomicron, an acetate producer, increased goblet cell differentiation, expression of mucus-related genes and the ratio of sialylated to sulfated mucins in mono-associated rats. B. thetaiotaomicron, therefore, stimulates the secretory lineage, favoring mucus production. When B. thetaiotaomicron was associated with F. prausnitzii, an acetate consumer and a butyrate producer, the effects on goblet cells and mucin glycosylation were diminished. F. prausnitzii, by attenuating the effects of B. thetaiotaomicron on mucus, may help the epithelium to maintain appropriate proportions of different cell types of the secretory lineage. Using a mucus-producing cell line, we showed that acetate up-regulated KLF4, a transcription factor involved in goblet cell differentiation.ConclusionsB. thetaiotaomicron and F. prausnitzii, which are metabolically complementary, modulate, in vivo, the intestinal mucus barrier by modifying goblet cells and mucin glycosylation. Our study reveals the importance of the balance between two main commensal bacteria in maintaining colonic epithelial homeostasis via their respective effects on mucus.


Glycobiology | 2012

Almost all human gastric mucin O-glycans harbor blood group A, B or H antigens and are potential binding sites for Helicobacter pylori

Yannick Rossez; Emmanuel Maes; Tony Lefebvre Darroman; Pierre Gosset; Chantal Ecobichon; Marie Joncquel Chevalier Curt; Ivo G. Boneca; Jean-Claude Michalski; Catherine Robbe-Masselot

Helicobacter pylori infects more than half of the worlds population. Although most patients are asymptomatic, persistent infection may cause chronic gastritis and gastric cancer. Adhesion of the bacteria to the gastric mucosa is a necessary prerequisite for the pathogenesis of H. pylori-related diseases and is mediated by mucin O-glycans. In order to define which glycans may be implicated in the binding of the bacteria to the gastric mucosa in humans, we have characterized the exact pattern of glycosylation of gastric mucins. We have identified that the major component was always a core 2-based glycan carrying two blood group H antigens, whatever was the blood group of individuals. We have also demonstrated that around 80% of O-glycans carried blood group A, B or H antigens, suggesting that the variation of gastric mucin glycosylation between individuals is partly due to the blood group status. This study will help better understanding the role of O-glycans in the physiology and homeostasis of gastric mucosa. Overall, the results reported here give us the necessary background information to begin studies to determine whether individuals who express certain carbohydrate epitopes on specific mucins are predisposed to certain gastric diseases.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2014

Stress disrupts intestinal mucus barrier in rats via mucin O-glycosylation shift: prevention by a probiotic treatment.

Stéphanie Da Silva; Catherine Robbe-Masselot; Afifa Ait-Belgnaoui; Alessandro Mancuso; Myriam Mercade-Loubière; Christel Salvador-Cartier; Marion Gillet; Laurent Ferrier; Pascal Loubière; Etienne Dague; Vassilia Theodorou; Muriel Mercier-Bonin

Despite well-known intestinal epithelial barrier impairment and visceral hypersensitivity in irritable bowel syndrome (IBS) patients and IBS-like models, structural and physical changes in the mucus layer remain poorly understood. Using a water avoidance stress (WAS) model, we aimed at evaluating whether 1) WAS modified gut permeability, visceral sensitivity, mucin expression, biochemical structure of O-glycans, and related mucus physical properties, and 2) whether Lactobacillus farciminis treatment prevented these alterations. Wistar rats received orally L. farciminis or vehicle for 14 days; at day 10, they were submitted to either sham or 4-day WAS. Intestinal paracellular permeability and visceral sensitivity were measured in vivo. The number of goblet cells and Muc2 expression were evaluated by histology and immunohistochemistry, respectively. Mucosal adhesion of L. farciminis was determined ex situ. The mucin O-glycosylation profile was obtained by mass spectrometry. Surface imaging of intestinal mucus was performed at nanoscale by atomic force microscopy. WAS induced gut hyperpermeability and visceral hypersensitivity but did not modify either the number of intestinal goblet cells or Muc2 expression. In contrast, O-glycosylation of mucins was strongly affected, with the appearance of elongated polylactosaminic chain containing O-glycan structures, associated with flattening and loss of the mucus layer cohesive properties. L. farciminis bound to intestinal Muc2 and prevented WAS-induced functional alterations and changes in mucin O-glycosylation and mucus physical properties. WAS-induced functional changes were associated with mucus alterations resulting from a shift in O-glycosylation rather than from changes in mucin expression. L. farciminis treatment prevented these alterations, conferring epithelial and mucus barrier strengthening.


Environmental Microbiology | 2013

Carbohydrate utilization by enterohaemorrhagic Escherichia coli O157:H7 in bovine intestinal content

Yolande Bertin; Frédérique Chaucheyras-Durand; Catherine Robbe-Masselot; Alexandra Durand; Anne de la Foye; Josée Harel; Paul S. Cohen; Tyrell Conway; Evelyne Forano; Christine Martin

The bovine gastrointestinal (GI) tract is the main reservoir for enterohaemorrhagic Escherichia coli (EHEC) responsible for food-borne infections. Characterization of nutrients preferentially used by EHEC in the bovine intestine would help to develop ecological strategies to reduce EHEC carriage. However, the carbon sources that support the growth of EHEC in the bovine intestine are poorly documented. In this study, a very low concentration of glucose, the most abundant monomer included in the cattle dietary polysaccharides, was detected in bovine small intestine contents (BSIC) collected from healthy cows at the slaughterhouse. Six carbohydrates reported to be included in the mucus layer covering the enterocytes [galactose, N-acetyl-glucosamine (GlcNAc), N-acetyl- galactosamine (GalNAc), fucose, mannose and N-acetyl neuraminic acid (Neu5Ac)] have been quantified for the first time in BSIC and accounted for a total concentration of 4.2 mM carbohydrates. The genes required for enzymatic degradation of the six mucus-derived carbohydrates are highly expressed during the exponential growth of the EHEC strain O157:H7 EDL933 in BSIC and are more strongly induced in EHEC than in bovine commensal E. coli. In addition, EDL933 consumed the free monosaccharides present in the BSIC more rapidly than the resident microbiota and commensal E. coli, indicating a competitive ability of EHEC to catabolize mucus-derived carbohydrates in the bovine gut. Mutations of EDL933 genes required for the catabolism of each of these sugars have been constructed, and growth competitions of the mutants with the wild-type strain clearly demonstrated that mannose, GlcNAc, Neu5Ac and galactose catabolism confers a high competitive growth advantage to EHEC in BSIC and probably represents an ecological niche for EHEC strains in the bovine small intestine. The utilization of these mucus-derived monosaccharides by EDL933 is apparently required for rapid growth of EHEC in BSIC, and for maintaining a competitive growth rate as compared with that of commensal E. coli. The results suggest a strategy for O157:H7 E. coli survival in the bovine intestine, whereby EHEC rapidly consumes mucus-derived carbohydrates that are poorly consumed by bacteria belonging to the resident intestinal microbiota, including commensal E. coli.


Journal of Proteome Research | 2009

Expression of a Core 3 Disialyl-Le(x) Hexasaccharide in Human Colorectal Cancers: A Potential Marker of Malignant Transformation in Colon.

Catherine Robbe-Masselot; Annkatrin Herrmann; Emmanuel Maes; Ingemar Carlstedt; Jean-Claude Michalski; Calliope Capon

Cancer-associated alterations in cell surface and secreted glycoproteins have been catalogued for many years but many of the studies of alterations in mucin carbohydrate have relied on histochemical or immunohistochemical methods, with little direct chemical analysis. In this study, we analyzed the O-glycosylation pattern of MUC2 glycoprotein isolated from colorectal carcinomas, transitional mucosa and resection margins from three patients with blood group A, B and O, respectively. After alkaline borohydride treatment, the released oligosaccharides were structurally characterized by nanoESI Q-TOF tandem mass spectrometry without prior fractionation or derivatization. As expected, we found an increased expression of sialyl-Tn antigen in the colonic cancer mucins. A more interesting feature was the increased expression of a core 3 sialyl-Le(x) hexasaccharide, NeuAcalpha2-3Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3(NeuAcalpha2-6)GalNAc in tumor, which appeared to compete with its sulfo-Le(x) counterpart in normal tissue, SO3-3Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3(NeuAcalpha2-6)GalNAc. This antigen, whose structure was confirmed by NMR experiments, is based on a core 3 glycan and may be a potential marker for the malignant transformation of colonic cells. Unexpectedly, most of the glycans recovered in normal and carcinomas extracts were based on a sialylated core 3, GlcNAcbeta1-3(NeuAcalpha2-6)GalNAcol. Moreover, the pattern of glycosylation was very similar between mucins isolated from each sample, the main differences related to the level of expression of the major oligosaccharides. The data obtained in this investigation may have value for future screening studies on colorectal cancer.


Glycoconjugate Journal | 2009

Glycosylation of human fetal mucins: a similar repertoire of O-glycans along the intestinal tract

Catherine Robbe-Masselot; Emmanuel Maes; Monique Rousset; Jean-Claude Michalski; Calliope Capon

Intestinal mucins are very high molecular weight glycoproteins secreted by goblet cells lining the crypt and the surface of the colonic mucosa. Profound alterations of mucin O-glycans are observed in diseases such as cancer and inflammation, modifying the function of the cell and its antigenic and adhesive properties. Based on immunohistochemical studies, certain cancer- and inflammation- associated glycans have been defined as oncofetal antigens. However, little or no chemical analysis has allowed the structural elucidation of O-glycans expressed on human fetal mucins. In this paper, mucins were isolated from different regions of the normal human intestine (ileum, right, transverse and left colon) of eight fetuses with A, B or O blood group. After alkaline borohydride treatment, the released oligosaccharides were investigated by nanoESI Q-TOF MS/MS (electrospray ionization quadrupole time-of-flight tandem mass spectrometry). More than 117 different glycans were identified, mainly based on core 2 structures. Some core 1, 3 and 4 oligosaccharides were also found. Most of the structures were acidic with NeuAc residues mainly α2–6 linked to the N-acetylgalactosaminitol and sulphate residues 3-linked to galactose or 6-linked to GlcNAc. In contrast to adult human intestinal mucins, Sda/Cad determinants were not expressed on fetal mucin O-glycans and the presence of an acidic gradient along the intestinal tract was not observed. Similar patterns of glycosylation were found in each part of the intestine and the level of expression of the major oligosaccharides was in the same order of magnitude. This study could help determining new oncofetal antigens, which can be exploited for the diagnosis or the treatment of intestinal diseases.


Glycobiology | 2009

O-Glycan inhibitors generate aryl-glycans, induce apoptosis and lead to growth inhibition in colorectal cancer cell lines

Georgios Patsos; Virginie Hebbe-Viton; Catherine Robbe-Masselot; David Masselot; Raul San Martin; Rosemary Greenwood; Christos Paraskeva; Andreas Klein; Monika Graessmann; Jean Claude Michalski; Timothy Gallagher; Anthony P. Corfield

Our studies provide direct evidence that O-glycosylation pathways play a role in the regulation of cell growth through apoptosis and proliferation pathways. A series of small molecular weight analogs of the GalNAc-alpha-1-O-serine/threonine structure based on 1-benzyl-2-acetamido-2-deoxy-alpha-O-d-galactopyranoside have been synthesized and tested in the human colorectal cancer cell lines PC/AA/C1/SB10C and HCA7/C29. Three inhibitors, 1-benzyl-2-acetamido-2-deoxy-alpha-O-D-galactopyranoside, and the corresponding 2-azido- and C-glycoside analogs were screened in these colorectal cancer cell lines at 0.5 mM and showed induction of apoptosis and downregulation of proliferation. Treatment of both cell lines with inhibitors led to changes in glycosylation detected with peanut lectin. The inhibition of glycosyltransferase activity in cell homogenates from human colorectal mucosal cells and cultured cell lines could be shown. The competitive action of the inhibitors resulted in the intracellular formation of 28 aryl-glycan products which were identified by MALDI and electrospray mass spectroscopy. The structures showed a differential pattern for each of the inhibitors in both cell lines. Gene array analysis of the glycogenes illustrated a pattern of glycosyltransferases that matched the glycan structures found in glycoproteins and aryl-glycans formed in the PC/AA/C1/SB10C cells; however, there was no action of the three inhibitors on glycogene transcript levels. The inhibitors act at both intermediary metabolic and genomic levels, resulting in altered protein glycosylation and aryl-glycan formation. These events may play a part in growth arrest.


The Journal of Infectious Diseases | 2015

Streptococcus gallolyticus Pil3 Pilus Is Required for Adhesion to Colonic Mucus and for Colonization of Mouse Distal Colon

Mariana Martins; Laetitia Aymeric; Laurence du Merle; Camille Danne; Catherine Robbe-Masselot; Patrick Trieu-Cuot; Philippe J. Sansonetti; Shaynoor Dramsi

Streptococcus gallolyticus is an increasing cause of bacteremia and infective endocarditis in the elderly. Several epidemiological studies have associated the presence of this bacterium with colorectal cancer. We have studied the interaction of S. gallolyticus with human colonic cells. S. gallolyticus strain UCN34, adhered better to mucus-producing cells such as HT-29-MTX than to the parental HT-29 cells. Attachment to colonic mucus is dependent on the pil3 pilus operon, which is heterogeneously expressed in the wild-type UCN34 population. We constructed a pil3 deletion mutant in a Pil3 overexpressing variant (Pil3+) and were able to demonstrate the role of Pil3 pilus in binding to colonic mucus. Importantly, we showed that pil3 deletion mutant was unable to colonize mice colon as compared to the isogenic Pil3+ variant. Our findings establish for the first time a murine model of intestinal colonization by S. gallolyticus.


Reproduction | 2013

Deleted in malignant brain tumor 1 is secreted in the oviduct and involved in the mechanism of fertilization in equine and porcine species

Barbara Ambruosi; Gianluca Accogli; Cécile Douet; Sylvie Canepa; Géraldine Pascal; Philippe Monget; Carla Moros; Uffe Holmskov; Jan Mollenhauer; Catherine Robbe-Masselot; Olivier Vidal; Salvatore Desantis; Ghylène Goudet

Oviductal environment affects preparation of gametes for fertilization, fertilization itself, and subsequent embryonic development. The aim of this study was to evaluate the effect of oviductal fluid and the possible involvement of deleted in malignant brain tumor 1 (DMBT1) on IVF in porcine and equine species that represent divergent IVF models. We first performed IVF after pre-incubation of oocytes with or without oviductal fluid supplemented or not with antibodies directed against DMBT1. We showed that oviductal fluid induces an increase in the monospermic fertilization rate and that this effect is canceled by the addition of antibodies, in both porcine and equine species. Moreover, pre-incubation of oocytes with recombinant DMBT1 induces an increase in the monospermic fertilization rate in the pig, confirming an involvement of DMBT1 in the fertilization process. The presence of DMBT1 in the oviduct at different stages of the estrus cycle was shown by western blot and confirmed by immunohistochemical analysis of ampulla and isthmus regions. The presence of DMBT1 in cumulus-oocyte complexes was shown by western blot analysis, and the localization of DMBT1 in the zona pellucida and cytoplasm of equine and porcine oocytes was observed using immunofluorescence analysis and confocal microscopy. Moreover, we showed an interaction between DMBT1 and porcine spermatozoa using surface plasmon resonance studies. Finally, a bioinformatic and phylogenetic analysis allowed us to identify the DMBT1 protein as well as a DMBT1-like protein in several mammals. Our results strongly suggest an important role of DMBT1 in the process of fertilization.


Environmental Microbiology | 2013

Concentration of osmoregulated periplasmic glucans (OPGs) modulates the activation level of the RcsCD RcsB phosphorelay in the phytopathogen bacteria Dickeya dadantii

Sébastien Bontemps-Gallo; Edwige Madec; Jacqueline Dondeyne; Brigitte Delrue; Catherine Robbe-Masselot; Olivier Vidal; Anne-France Prouvost; Gilles Boussemart; Jean-Pierre Bohin; Jean-Marie Lacroix

Osmoregulated periplasmic glucans (OPGs) are general constituents of many Proteobacteria. Synthesis of these oligosaccharides is repressed by increased osmolarity of the medium. OPGs are important factors required for full virulence in many zoo- or phytopathogens including Dickeya dadantii. The phytopathogen enterobacterium D. dadantii causes soft-rot disease on a wide range of plant species. The total loss of virulence of opg-negative strains of D. dadantii is linked to the constitutive activation of the RcsCD RcsB phosphorelay highlighting relationship between this phosphorelay and OPGs. Here we show that OPGs control the RcsCD RcsB activation in a concentration-dependent manner, are required for proper activation of this phosphorelay by medium osmolarity, and a high concentration of OPGs in planta is maintained to achieve the low level of activation of the RcsCD RcsB phosphorelay required for full virulence in D. dadantii.

Collaboration


Dive into the Catherine Robbe-Masselot's collaboration.

Top Co-Authors

Avatar

Jean-Claude Michalski

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Renaud Léonard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yannick Rossez

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emmanuel Maes

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vassilia Theodorou

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Véronique Robert

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge