Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cathrine R. Carlson is active.

Publication


Featured researches published by Cathrine R. Carlson.


EMBO Reports | 2007

AKAP complex regulates Ca2+ re‐uptake into heart sarcoplasmic reticulum

Birgitte Lygren; Cathrine R. Carlson; Katja Santamaria; Valentina Lissandron; Theresa McSorley; Jessica Litzenberg; Dorothea Lorenz; Burkhard Wiesner; Walter Rosenthal; Manuela Zaccolo; Kjetil Taskén; Enno Klussmann

The β‐adrenergic receptor/cyclic AMP/protein kinase A (PKA) signalling pathway regulates heart rate and contractility. Here, we identified a supramolecular complex consisting of the sarcoplasmic reticulum Ca2+‐ATPase (SERCA2), its negative regulator phospholamban (PLN), the A‐kinase anchoring protein AKAP18δ and PKA. We show that AKAP18δ acts as a scaffold that coordinates PKA phosphorylation of PLN and the adrenergic effect on Ca2+ re‐uptake. Inhibition of the compartmentalization of this cAMP signalling complex by specific molecular disruptors interferes with the phosphorylation of PLN. This prevents the subsequent release of PLN from SERCA2, thereby affecting the Ca2+ re‐uptake into the sarcoplasmic reticulum induced by adrenergic stimuli.


Journal of Biological Chemistry | 2006

Delineation of type I protein kinase A-selective signaling events using an RI anchoring disruptor

Cathrine R. Carlson; Birgitte Lygren; Torunn Berge; Naoto Hoshi; Wei Wong; Kjetil Taskén; John D. Scott

Control of specificity in cAMP signaling is achieved by A-kinase anchoring proteins (AKAPs), which assemble cAMP effectors such as protein kinase A (PKA) into multiprotein signaling complexes in the cell. AKAPs tether the PKA holoenzymes at subcellular locations to favor the phosphorylation of selected substrates. PKA anchoring is mediated by an amphipathic helix of 14-18 residues on each AKAP that binds to the R subunit dimer of the PKA holoenzymes. Using a combination of bioinformatics and peptide array screening, we have developed a high affinity-binding peptide called RIAD (RI anchoring disruptor) with >1000-fold selectivity for type I PKA over type II PKA. Cell-soluble RIAD selectively uncouples cAMP-mediated inhibition of T cell function and inhibits progesterone synthesis at the mitochondria in steroid-producing cells. This study suggests that these processes are controlled by the type I PKA holoenzyme and that RIAD can be used as a tool to define anchored type I PKA signaling events.


Journal of Immunology | 2007

Inhibition of T Cell Activation by Cyclic Adenosine 5′-Monophosphate Requires Lipid Raft Targeting of Protein Kinase A Type I by the A-Kinase Anchoring Protein Ezrin

Anja Ruppelt; Randi Mosenden; Mikaela Grönholm; Einar Martin Aandahl; Derek Tobin; Cathrine R. Carlson; Hilde Abrahamsen; Friedrich W. Herberg; Olli Carpén; Kjetil Taskén

cAMP negatively regulates T cell immune responses by activation of type I protein kinase A (PKA), which in turn phosphorylates and activates C-terminal Src kinase (Csk) in T cell lipid rafts. Using yeast two-hybrid screening, far-Western blot, immunoprecipitation and immunofluorescense analyses, and small interfering RNA-mediated knockdown, we identified Ezrin as the A-kinase anchoring protein that targets PKA type I to lipid rafts. Furthermore, Ezrin brings PKA in proximity to its downstream substrate Csk in lipid rafts by forming a multiprotein complex consisting of PKA/Ezrin/Ezrin-binding protein 50, Csk, and Csk-binding protein/phosphoprotein associated with glycosphingolipid-enriched microdomains. The complex is initially present in immunological synapses when T cells contact APCs and subsequently exits to the distal pole. Introduction of an anchoring disruptor peptide (Ht31) into T cells competes with Ezrin binding to PKA and thereby releases the cAMP/PKA type I-mediated inhibition of T cell proliferation. Finally, small interfering RNA-mediated knockdown of Ezrin abrogates cAMP regulation of IL-2. We propose that Ezrin is essential in the assembly of the cAMP-mediated regulatory pathway that modulates T cell immune responses.


Physiological Genomics | 2012

Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure.

Ida G. Lunde; Jan Magnus Aronsen; Heidi Kvaløy; Eirik Qvigstad; Ivar Sjaastad; Theis Tønnessen; Geir Christensen; Line M. Grønning-Wang; Cathrine R. Carlson

Reversible protein O-GlcNAc modification has emerged as an essential intracellular signaling system in several tissues, including cardiovascular pathophysiology related to diabetes and acute ischemic stress. We tested the hypothesis that cardiac O-GlcNAc signaling is altered in chronic cardiac hypertrophy and failure of different etiologies. Global protein O-GlcNAcylation and the main enzymes regulating O-GlcNAc, O-GlcNAc transferase (OGT), O-GlcNAcase (OGA), and glutamine-fructose-6-phosphate amidotransferase (GFAT) were measured by immunoblot and/or real-time RT-PCR analyses of left ventricular tissue from aortic stenosis (AS) patients and rat models of hypertension, myocardial infarction (MI), and aortic banding (AB), with and without failure. We show here that global O-GlcNAcylation was increased by 65% in AS patients, by 47% in hypertensive rats, by 81 and 58% post-AB, and 37 and 60% post-MI in hypertrophic and failing hearts, respectively (P < 0.05). Noticeably, protein O-GlcNAcylation patterns varied in hypertrophic vs. failing hearts, and the most extensive O-GlcNAcylation was observed on proteins of 20-100 kDa in size. OGT, OGA, and GFAT2 protein and/or mRNA levels were increased by pressure overload, while neither was regulated by myocardial infarction. Pharmacological inhibition of OGA decreased cardiac contractility in post-MI failing hearts, demonstrating a possible role of O-GlcNAcylation in development of chronic cardiac dysfunction. Our data support the novel concept that O-GlcNAc signaling is altered in various etiologies of cardiac hypertrophy and failure, including human aortic stenosis. This not only provides an exciting basis for discovery of new mechanisms underlying pathological cardiac remodeling but also implies protein O-GlcNAcylation as a possible new therapeutic target in heart failure.


Molecular Microbiology | 1994

A small (2.4 Mb) Bacillus cereus chromosome corresponds to a conserved region of a larger (5.3 Mb) Bacillus cereus chromosome

Cathrine R. Carlson; Anne-Brit Kolstø

We have determined the sizes of the chromosomes of six Bacillus cereus strains (range 2.4–4.3 Mb) and constructed a physical map of the smallest B. cereus chromosome (2.4 Mb). This map was compared to those of the chromosomes of four B. cereus strains and one B. thuringiensis strain previously determined to be 5.4‐6.3 Mb. Of more than 50 probes, 30 were localized to the same half of the larger B. cereus and B. thuringiensis chromosomes. All 30 were also present on the small chromosome. Twenty of the probes present on the other half of the larger chromosomes were either present on extrachromosomal DNA, or absent from the B. cereus strain carrying the small chromosome. We propose that the genome of B. cereus and B. thuringiensis has one constant part and another less stable part which is more easily mobilized into other genetic elements. This part of the genome is localized to one region of the chromosome and may be subject to deletions or more frequent relocations between the chromosome and episomal elements of varying sizes up to the order of megabases.


Journal of Biological Chemistry | 2003

Merlin Links to the cAMP Neuronal Signaling Pathway by Anchoring the RIβ Subunit of Protein Kinase A

Mikaela Grönholm; Lutz Vossebein; Cathrine R. Carlson; Juha Kuja-Panula; Tambet Teesalu; Kaija Alfthan; Antti Vaheri; Heikki Rauvala; Friedrich W. Herberg; Kjetil Taskén; Olli Carpén

The cAMP-protein kinase A (PKA) pathway, important in neuronal signaling, is regulated by molecules that bind and target PKA regulatory subunits. Of four regulatory subunits, RIβ is most abundantly expressed in brain. The RIβ knockout mouse has defects in hippocampal synaptic plasticity, suggesting a role for RIβ in learning and memory-related functions. Molecules that interact with or regulate RIβ are still unknown. We identified the neurofibromatosis 2 tumor suppressor protein merlin (schwannomin), a molecule related to the ezrin-radixin-moesin family of membrane-cytoskeleton linker proteins, as a binding partner for RIβ. Merlin and RIβ demonstrated a similar expression pattern in central nervous system neurons and an overlapping subcellular localization in cultured hippocampal neurons and transfected cells. The proteins were coprecipitated from brain lysates by cAMP-agarose and coimmunoprecipited from cellular lysates with specific antibodies. In vitro binding studies verified that the interaction is direct. The interaction appeared to be under conformational regulation and was mediated via the α-helical region of merlin. Sequence comparison between merlin and known PKA anchoring proteins identified a conserved α-helical PKA anchoring protein motif in merlin. These results identify merlin as the first neuronal binding partner for PKA-RIβ and suggest a novel function for merlin in connecting neuronal cytoskeleton to PKA signaling.


EMBO Reports | 2002

Distinct but overlapping domains of AKAP95 are implicated in chromosome condensation and condensin targeting

Turid Eide; Cathrine R. Carlson; Kristin Austlid Taskén; Tatsuya Hirano; Kjetil Taskén; Philippe Collas

A‐kinase (or PKA)‐anchoring protein AKAP95 is a zinc‐finger protein implicated in mitotic chromosome condensation by acting as a targeting molecule for the condensin complex. We have identified determinants of chromatin‐binding, condensin‐targeting and chromosome‐condensation activities of AKAP95. Binding of AKAP95 to chromatin is conferred by residues 387–450 and requires zinc finger ZF1. Residues 525–569 are essential for condensation of AKAP95‐free chromatin and condensin recruitment to chromosomes. Mutation of either zinc finger of AKAP95 abolishes condensation. However, ZF1 is dispensable for condensin targeting, whereas the C‐terminal ZF2 is required. AKAP95 interacts with Xenopus XCAP‐H condensin subunit in vitro and in vivo but not with the human hCAP‐D2 subunit. The data illustrate the involvement of overlapping, but distinct, domains of AKAP95 for condensin recruitment and chromosome condensation and argue for a key role of ZF1 in chromosome condensation and ZF2 in condensin targeting. Moreover, condensin recruitment to chromatin is not sufficient to promote condensation.


PLOS ONE | 2011

Syndecan-4 Is Essential for Development of Concentric Myocardial Hypertrophy via Stretch-Induced Activation of the Calcineurin-NFAT Pathway

Alexandra Vanessa Finsen; Ida G. Lunde; Ivar Sjaastad; Even K. Østli; Marianne Lyngra; Hilde Jarstadmarken; Almira Hasic; Ståle Nygård; Sarah A. Wilcox-Adelman; Paul F. Goetinck; Torstein Lyberg; Biljana Skrbic; Geir Florholmen; Theis Tønnessen; William E. Louch; Srdjan Djurovic; Cathrine R. Carlson; Geir Christensen

Sustained pressure overload leads to compensatory myocardial hypertrophy and subsequent heart failure, a leading cause of morbidity and mortality. Further unraveling of the cellular processes involved is essential for development of new treatment strategies. We have investigated the hypothesis that the transmembrane Z-disc proteoglycan syndecan-4, a co-receptor for integrins, connecting extracellular matrix proteins to the cytoskeleton, is an important signal transducer in cardiomyocytes during development of concentric myocardial hypertrophy following pressure overload. Echocardiographic, histochemical and cardiomyocyte size measurements showed that syndecan-4−/− mice did not develop concentric myocardial hypertrophy as found in wild-type mice, but rather left ventricular dilatation and dysfunction following pressure overload. Protein and gene expression analyses revealed diminished activation of the central, pro-hypertrophic calcineurin-nuclear factor of activated T-cell (NFAT) signaling pathway. Cardiomyocytes from syndecan-4−/−-NFAT-luciferase reporter mice subjected to cyclic mechanical stretch, a hypertrophic stimulus, showed minimal activation of NFAT (1.6-fold) compared to 5.8-fold increase in NFAT-luciferase control cardiomyocytes. Accordingly, overexpression of syndecan-4 or introducing a cell-permeable membrane-targeted syndecan-4 polypeptide (gain of function) activated NFATc4 in vitro. Pull-down experiments demonstrated a direct intracellular syndecan-4-calcineurin interaction. This interaction and activation of NFAT were increased by dephosphorylation of serine 179 (pS179) in syndecan-4. During pressure overload, phosphorylation of syndecan-4 was decreased, and association between syndecan-4, calcineurin and its co-activator calmodulin increased. Moreover, calcineurin dephosphorylated pS179, indicating that calcineurin regulates its own binding and activation. Finally, patients with hypertrophic myocardium due to aortic stenosis had increased syndecan-4 levels with decreased pS179 which was associated with increased NFAT activation. In conclusion, our data show that syndecan-4 is essential for compensatory hypertrophy in the pressure overloaded heart. Specifically, syndecan-4 regulates stretch-induced activation of the calcineurin-NFAT pathway in cardiomyocytes. Thus, our data suggest that manipulation of syndecan-4 may provide an option for therapeutic modulation of calcineurin-NFAT signaling.


Microbiology | 1996

Genomic organization of the entomopathogenic bacterium Bacillus thuringiensis subsp. berliner 1715

Cathrine R. Carlson; Marguerite-M. Lecadet; Anne-Brit Kolstø

A physical and genetic map of the Bacillus thuringiensis subsp. berliner 1715 (serotype 1) chromosome was constructed by pulsed field gel electrophoresis using three restriction enzymes, Ascl, Notl and Sfil. A total of 24 restriction enzyme sites and 28 probes were located on the map. The chromosome size was 5.7 Mb. Consistent with previous mapping of Bacillus cereus chromosomes, the genes were nonrandomly distributed. Genes which are often plasmid-encoded were located on one half of the chromosome, whereas the other half contained rRNA genes and the origin region. Hybridization with macro-restriction fragments showed that the region containing rRNA genes and the origin was similar to that of the B. cereus type strain, ATCC 14579, and confirmed that the region was conserved between the B. cereus and B. thuringiensis chromosomes. The insecticidal toxin probe crylA or the transposon probe Tn4430 hybridized to six extrachromosomal elements of 60, 60, 100, 130, 270 and 600 kb, indicating that the genome size was at least 6.9 Mb.


Biochemical Journal | 2006

Characterization of A-kinase-anchoring disruptors using a solution-based assay

Anne Jorunn Stokka; Frank Gesellchen; Cathrine R. Carlson; John D. Scott; Friedrich W. Herberg; Kjetil Taskén

Subcellular localization of PKA (cAMP-dependent protein kinase or protein kinase A) is determined by protein-protein interactions between its R (regulatory) subunits and AKAPs (A-kinase-anchoring proteins). In the present paper, we report the development of the Amplified Luminescent Proximity Homogeneous Assay (AlphaScreen) as a means to characterize AKAP-based peptide competitors of PKA anchoring. In this assay, the prototypic anchoring disruptor Ht31 efficiently competed in RIIalpha isoform binding with RII-specific and dual-specificity AKAPs (IC50 values of 1.4+/-0.2 nM and 6+/-1 nM respectively). In contrast, RIalpha isoform binding to a dual-specific AKAP was less efficiently competed (IC50 of 156+/-10 nM). Characterization of two RI-selective anchoring disruptors, RIAD (RI-anchoring disruptor) and PV-38 revealed that RIAD (IC50 of 13+/-1 nM) was 20-fold more potent than PV-38 (IC50 of 304+/-17 nM) and did not compete in the RIIalpha-AKAP interaction. We also observed that the kinetics of RII displacement from pre-formed PKA-AKAP complexes and competition of RII-AKAP complex formation by Ht31 differed by an order of magnitude when the component parts were mixed in vitro. No such difference in potency was seen for RIalpha-AKAP complexes. Thus the AlphaScreen assay may prove to be a valuable tool for detailed characterization of a variety of PKA-AKAP complexes.

Collaboration


Dive into the Cathrine R. Carlson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivar Sjaastad

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helge Røsjø

Akershus University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Torbjørn Omland

Akershus University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ida G. Lunde

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arne Didrik Høiseth

Akershus University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge