Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cathryn A. Dickson is active.

Publication


Featured researches published by Cathryn A. Dickson.


Lipids | 2005

Highly unsaturated fatty acid synthesis in vertebrates : New insights with the cloning and characterization of a Δ6 desaturase of atlantic salmon

Xiaozhong Zheng; Douglas R. Tocher; Cathryn A. Dickson; J. Gordon Bell; A.J. Teale

Fish are an important source of the n−3 highly unsaturated fatty acids (HUFA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids that are crucial to the health of higher vertebrates. The synthesis of HUFA involves enzyme-mediated desaturation, and a Δ5 fatty acyl desaturase cDNA has been cloned from Atlantic salmon (Salmo salar) and functionally characterization of a Δ6 fatty acyl desaturase of Atlantic salmon and describe its genomic structure, tissue expression, and nutritional regulation. A salmon genomic library was screened with a salmon Δ5 desaturase cDNA and positive recombinant phage isolated and subcloned. The full-length cDNA for the putative fatty acyl desaturase was shown to comprise 2106 bp containing an open reading frame of 1365 bp specifying a protein of 454 amino acids (GenBank accession no. AY458652). The protein sequence included three histidine boxes, two transmembrane regions, and an N-terminal cytochrome b5 domain containing the heme-binding motif HPGG, all of which are characteristic of microsomal fatty acid desaturases. Functional expression showed that this gene possessed predominantly Δ6 desaturase activity. Screening and sequence analysis of the genomic DNA of a single fish revealed that the Δ6 desaturase gene constituted 13 exons in 7965 bp of genomic DNA. Quantitative real-time PCR assay of gene expression in Atlantic salmon showed that both Δ6 and Δ5 fatty acyl desaturase genes, and a fatty acyl elongase gene, were highly expressed in intestine, liver, and brain, and less so in kidney, heart, gill, adipose tissue, muscle, and spleen. Furthermore, expression of both Δ6 and Δ5 fatty acyl desaturase genes in intestine, liver, red muscle, and adipose tissue was higher in salmon fed a diet containing vegetable oil than in fish fed a diet containing fish oil.


Marine Biotechnology | 2004

Molecular Cloning and Functional Characterization of Fatty Acyl Desaturase and Elongase cDNAs Involved in the Production of Eicosapentaenoic and Docosahexaenoic Acids from α -Linolenic Acid in Atlantic Salmon ( Salmo salar )

Nicola Hastings; Morris K. Agaba; Douglas R. Tocher; Xiaozhong Zheng; Cathryn A. Dickson; James R. Dick; A.J. Teale

Fish are the only major dietary source for humans of ω-3 highly unsaturated fatty acids (HUFAs) and with declining fisheries farmed fish such as Atlantic salmon (Salmo salar) constitute an increasing proportion of the fish in the human diet. However, the current high use of fish oils, derived from wild capture marine fisheries, in aquaculture feeds is not sustainable in the longer term and will constrain continuing growth of aquaculture activities. Greater understanding of how fish metabolize and biosynthesize HUFA may lead to more sustainable aquaculture diets. The study described here contributes to an effort to determine the molecular genetics of the HUFA biosynthetic pathway in salmon, with the overall aim being to determine mechanisms for optimizing the use of vegetable oils in Atlantic salmon culture. In this paper we describe the cloning and functional characterization of 2 genes from salmon involved in the biosynthesis of HUFA. A salmon desaturase complementary DNA, SalDes, was isolated that include an open reading frame of 1362 bp specifying a protein of 454 amino acids. The protein sequence includes all the characteristics of microsomal fatty acid desaturases, including 3 histidine boxes, 2 transmembrane regions, and an N-terminal cytochrome b5 domain containing a heme-binding motif similar to that of other fatty acid desaturases. Functional expression in the yeast Saccharomyces cerevisiae showed SalDes is predominantly an ω-3 δ5 desaturase, a key enzyme in the synthesis of eicosapentaenoic acid (20:5n-3) from α-linolenic acid (18:3n-3). The desaturase showed only low levels of δ6 activity toward C18 polyunsaturated fatty acids. In addition, a fatty acid elongase cDNA, SalElo, was isolated that included an open reading frame of 888 bp, specifying a protein of 295 amino acids. The protein sequence of SalElo included characteristics of microsomal fatty acid elongases, including a histidine box and a transmembrane region. Upon expression in yeast SalElo showed broad substrate specificity for polyunsaturated fatty acids with a range of chain lengths, with the rank order being C18 > C20 > C22. Thus this one polypeptide product displays all fatty acid elongase activities required for the biosynthesis of docosahexaenoic acid (22:6n-3) from 18:3n-3.


Marine Biotechnology | 2004

Zebrafish cDNA Encoding Multifunctional Fatty Acid Elongase Involved in Production of Eicosapentaenoic (20:5n-3) and Docosahexaenoic (22:6n-3) Acids

Morris K. Agaba; Douglas R. Tocher; Cathryn A. Dickson; James R. Dick; A.J. Teale

Enzymes that increase the chain length of fatty acids are essential for biosynthesis of highly unsaturated fatty acids. The gLELO gene encodes a protein involved in the elongation of polyunsaturated fatty acids in the fungus Mortierella alpina. A search of the GenBank database identified several expressed sequence tag sequences, including one obtained from zebrafish (Danio rerio), with high similarity to gLELO. The full-length transcript ZfELO, encoding a polypeptide of 291 amino acid residues, was isolated from zebrafish liver cDNA. The predicted amino acid sequence of the open reading frame shared high similarity with the elongases of Caenorhabditis elegans and human. When expressed in Saccharomyces cerevisiae, the zebrafish open reading frame conferred the ability to lengthen the chain of a range of C18, C20, and C22 polyunsaturated fatty acids, indicating not only that biosynthesis of 22:6n-3 from 18:3n-3 via a 24-carbon intermediate is feasible, but also that one elongase enzyme can perform all three elongation steps required. The zebrafish enzyme was also able to elongate monounsaturated and saturated fatty acids, and thus demonstrates a greater level of promiscuity in terms of substrate use than any elongase enzyme described previously.


Plant Physiology | 2003

Tobacco transgenic lines that express fenugreek galactomannan galactosyltransferase constitutively have structurally altered galactomannans in their seed endosperm cell walls

J. S. Grant Reid; Mary Edwards; Cathryn A. Dickson; Catherine L. Scott; Michael J. Gidley

Galactomannans [(1→6)-α-d-galactose (Gal)-substituted (1→4)-β-d-mannans] are major cell wall storage polysaccharides in the endosperms of some seeds, notably the legumes. Their biosynthesis in developing legume seeds involves the functional interaction of two membrane-bound glycosyltransferases, mannan synthase (MS) and galactomannan galactosyltransferase (GMGT). MS catalyzes the elongation of the mannan backbone, whereas GMGT action determines the distribution and amount of Gal substitution. Fenugreek (Trigonella foenum-graecum) forms a galactomannan with a very high degree of Gal substitution (Man/Gal = 1.1), and its GMGT has been characterized. We now report that the endosperm cell walls of the tobacco (Nicotiana tabacum) seed are rich in a galactomannan with a very low degree of Gal substitution (Man/Gal about 20) and that its depositional time course is closely correlated with membrane-bound MS and GMGT activities. Furthermore, we demonstrate that seeds from transgenic tobacco lines that express fenugreek GMGT constitutively in membrane-bound form have endosperm galactomannans with increased average degrees of Gal substitution (Man/Gal about 10 in T1 generation seeds and about 7.5 in T2generation seeds). Membrane-bound enzyme systems from transgenic seed endosperms form galactomannans in vitro that are more highly Gal substituted than those formed by controls under identical conditions. To our knowledge, this is the first report of structural manipulation of a plant cell wall polysaccharide in transgenic plants via a biosynthetic membrane-bound glycosyltransferase.


Plant Physiology | 2004

The Seeds of Lotus japonicus Lines Transformed with Sense, Antisense, and Sense/Antisense Galactomannan Galactosyltransferase Constructs Have Structurally Altered Galactomannans in Their Endosperm Cell Walls

Mary Edwards; Tze-Siang Choo; Cathryn A. Dickson; Catherine E. Scott; Michael J. Gidley; J. S. Grant Reid

Galactomannan biosynthesis in legume seed endosperms involves two Golgi membrane-bound glycosyltransferases, mannan synthase and galactomannan galactosyltransferase (GMGT). GMGT specificity is an important factor regulating the distribution and amount of (1→6)-α-galactose (Gal) substitution of the (1→4)-β-linked mannan backbone. The model legume Lotus japonicus is shown now to have endospermic seeds with endosperm cell walls that contain a high-Gal galactomannan (mannose [Man]/Gal = 1.2-1.3). Galactomannan biosynthesis in developing L. japonicus endosperms has been mapped, and a cDNA encoding a functional GMGT has been obtained from L. japonicus endosperms during galactomannan deposition. L. japonicus has been transformed with sense, antisense, and sense/antisense (“hairpin loop”) constructs of the GMGT cDNA. Some of the sense, antisense, and sense/antisense transgenic lines exhibited galactomannans with altered (higher) Man/Gal values in their (T1 generation) seeds, at frequencies that were consistent with posttranscriptional silencing of GMGT. For T1 generation individuals, transgene inheritance was correlated with galactomannan composition and amount in the endosperm. All the azygous individuals had unchanged galactomannans, whereas those that had inherited a GMGT transgene exhibited a range of Man/Gal values, up to about 6 in some lines. For Man/Gal values up to 4, the results were consistent with lowered Gal substitution of a constant amount of mannan backbone. Further lowering of Gal substitution was accompanied by a slight decrease in the amount of mannan backbone. Microsomal membranes prepared from the developing T2 generation endosperms of transgenic lines showed reduced GMGT activity relative to mannan synthase. The results demonstrate structural modification of a plant cell wall polysaccharide by designed regulation of a Golgi-bound glycosyltransferase.


Journal of Fish Diseases | 2012

Intraspecific diversity of Edwardsiella ictaluri isolates from diseased freshwater catfish, Pangasianodon hypophthalmus (Sauvage), cultured in the Mekong Delta, Vietnam

Kerry Bartie; Frank W. Austin; Amer M. Diab; Cathryn A. Dickson; Tu Thanh Dung; Mauro Giacomini; Margaret Crumlish

A molecular epidemiology study was conducted on 90 Edwardsiella ictaluri isolates recovered from diseased farmed freshwater catfish, Pangasianodon hypophthalmus, cultured in the Mekong Delta, Vietnam. Thirteen isolates of E. ictaluri derived from diseased channel catfish, Ictalurus punctatus, cultured in the USA were included for comparison. All the E.ictaluri isolates tested were found to be biochemically indistinguishable. A repetitive (rep)-PCR using the single (GTG)(5) primer was shown to possess limited discriminatory power, yielding two similar DNA profiles categorized as (GTG)(5) -PCR group 1 or 2 among the Vietnam isolates and (GTG)(5) -PCR group 1 within the USA isolates. Macrorestriction analysis identified 14 and 22 unique pulsotypes by XbaI and SpeI, respectively, among a subset of 59 E. ictaluri isolates. Numerical analysis of the combined macrorestriction profiles revealed three main groups: a distinct cluster formed exclusively of the USA isolates, and a major and minor cluster with outliers contained the Vietnam isolates. Antibiotic susceptibility and plasmid profiling supported the existence of the three groups. The results indicate that macrorestriction analysis may be regarded as a suitable typing method among the E. ictaluri species of limited intraspecific diversity. Furthermore, the findings suggest that E. ictaluri originating from Vietnam may constitute a distinct genetic group.


Plant Journal | 1999

Molecular characterisation of a membrane-bound galactosyltransferase of plant cell wall matrix polysaccharide biosynthesis.

Mary Edwards; Cathryn A. Dickson; Sumant Chengappa; Christopher Sidebottom; Michael J. Gidley; J. S. Grant Reid


Comparative Biochemistry and Physiology B | 2004

Characterization and comparison of fatty acyl Δ6 desaturase cDNAs from freshwater and marine teleost fish species

Xiaozhong Zheng; I. Seiliez; Nicola Hastings; Douglas R. Tocher; S. Panserat; Cathryn A. Dickson; P. Bergot; A.J. Teale


Aquaculture | 2004

Effects of diets containing vegetable oil on expression of genes involved in highly unsaturated fatty acid biosynthesis in liver of Atlantic salmon (Salmo salar)

Xiaozhong Zheng; Douglas R. Tocher; Cathryn A. Dickson; J. Gordon Bell; A.J. Teale


Comparative Biochemistry and Physiology B | 2005

Cloning and functional characterisation of polyunsaturated fatty acid elongases of marine and freshwater teleost fish

Morris K. Agaba; Douglas R. Tocher; Xiaozhong Zheng; Cathryn A. Dickson; James R. Dick; A.J. Teale

Collaboration


Dive into the Cathryn A. Dickson's collaboration.

Top Co-Authors

Avatar

A.J. Teale

University of Stirling

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge