Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cathryn R. Nagler is active.

Publication


Featured researches published by Cathryn R. Nagler.


Cell | 2015

Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis

Jessica M. Yano; Kristie Yu; Gregory P. Donaldson; Gauri G. Shastri; Phoebe Ann; Liang Ma; Cathryn R. Nagler; Rustem F. Ismagilov; Sarkis K. Mazmanian; Elaine Y. Hsiao

The gastrointestinal (GI) tract contains much of the bodys serotonin (5-hydroxytryptamine, 5-HT), but mechanisms controlling the metabolism of gut-derived 5-HT remain unclear. Here, we demonstrate that the microbiota plays a critical role in regulating host 5-HT. Indigenous spore-forming bacteria (Sp) from the mouse and human microbiota promote 5-HT biosynthesis from colonic enterochromaffin cells (ECs), which supply 5-HT to the mucosa, lumen, and circulating platelets. Importantly, microbiota-dependent effects on gut 5-HT significantly impact host physiology, modulating GI motility and platelet function. We identify select fecal metabolites that are increased by Sp and that elevate 5-HT in chromaffin cell cultures, suggesting direct metabolic signaling of gut microbes to ECs. Furthermore, elevating luminal concentrations of particular microbial metabolites increases colonic and blood 5-HT in germ-free mice. Altogether, these findings demonstrate that Sp are important modulators of host 5-HT and further highlight a key role for host-microbiota interactions in regulating fundamental 5-HT-related biological processes.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Commensal bacteria protect against food allergen sensitization

Andrew Stefka; Taylor Feehley; Prabhanshu Tripathi; Ju Qiu; Kathleen McCoy; Sarkis K. Mazmanian; Melissa Y Tjota; Goo-Young Seo; Severine Cao; Betty Theriault; Dionysios A. Antonopoulos; Liang Zhou; Eugene B. Chang; Yang-Xin Fu; Cathryn R. Nagler

Significance The prevalence of food allergy is rising at an alarming rate; the US Centers for Disease Control and Prevention documented an 18% increase among children in the United States between 1997 and 2007. Twenty-first century environmental interventions are implicated by this dramatic generational increase. In this report we examine how alterations in the trillions of commensal bacteria that normally populate the gastrointestinal tract influence allergic responses to food. We identify a bacterial community that protects against sensitization and describe the mechanism by which these bacteria regulate epithelial permeability to food allergens. Our data support the development of novel adjunctive probiotic therapies to potentiate the induction of tolerance to dietary allergens. Environmentally induced alterations in the commensal microbiota have been implicated in the increasing prevalence of food allergy. We show here that sensitization to a food allergen is increased in mice that have been treated with antibiotics or are devoid of a commensal microbiota. By selectively colonizing gnotobiotic mice, we demonstrate that the allergy-protective capacity is conferred by a Clostridia-containing microbiota. Microarray analysis of intestinal epithelial cells from gnotobiotic mice revealed a previously unidentified mechanism by which Clostridia regulate innate lymphoid cell function and intestinal epithelial permeability to protect against allergen sensitization. Our findings will inform the development of novel approaches to prevent or treat food allergy based on modulating the composition of the intestinal microbiota.


Journal of Experimental Medicine | 2007

The Wiskott-Aldrich syndrome protein is required for the function of CD4+CD25+Foxp3+ regulatory T cells

Michel H. Maillard; Vinícius Cotta-de-Almeida; Fuminao Takeshima; Deanna D. Nguyen; Pierre Michetti; Cathryn R. Nagler; Atul K. Bhan; Scott B. Snapper

The Wiskott-Aldrich syndrome, a primary human immunodeficiency, results from defective expression of the hematopoietic-specific cytoskeletal regulator Wiskott-Aldrich syndrome protein (WASP). Because CD4+CD25+Foxp3+ naturally occurring regulatory T (nTreg) cells control autoimmunity, we asked whether colitis in WASP knockout (WKO) mice is associated with aberrant development/function of nTreg cells. We show that WKO mice have decreased numbers of CD4+CD25+Foxp3+ nTreg cells in both the thymus and peripheral lymphoid organs. Moreover, we demonstrate that WKO nTreg cells are markedly defective in both their ability to ameliorate the colitis induced by the transfer of CD45RBhi T cells and in functional suppression assays in vitro. Compared with wild-type (WT) nTreg cells, WKO nTreg cells show significantly impaired homing to both mucosal (mesenteric) and peripheral sites upon adoptive transfer into WT recipient mice. Suppression defects may be independent of antigen receptor–mediated actin rearrangement because both WT and WKO nTreg cells remodeled their actin cytoskeleton inefficiently upon T cell receptor stimulation. Preincubation of WKO nTreg cells with exogenous interleukin (IL)-2, combined with antigen receptor–mediated activation, substantially rescues the suppression defects. WKO nTreg cells are also defective in the secretion of the immunomodulatory cytokine IL-10. Overall, our data reveal a critical role for WASP in nTreg cell function and implicate nTreg cell dysfunction in the autoimmunity associated with WASP deficiency.


The ISME Journal | 2016

Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants

Roberto Berni Canani; Naseer Sangwan; Andrew Stefka; Rita Nocerino; Lorella Paparo; Rosita Aitoro; Antonio Calignano; Aly A. Khan; Jack A. Gilbert; Cathryn R. Nagler

Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow’s milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut.


Nature Immunology | 2012

Lymphotoxin regulates commensal responses to enable diet-induced obesity

Vaibhav Upadhyay; Valeriy Poroyko; Tae Jin Kim; Suzanne Devkota; Sherry Fu; Donald C. Liu; Alexei V. Tumanov; Ekaterina P. Koroleva; Liufu Deng; Cathryn R. Nagler; Eugene B. Chang; Hong Tang; Yang-Xin Fu

Microbiota are essential for weight gain in mouse models of diet-induced obesity (DIO), but the pathways that cause the microbiota to induce weight gain are unknown. We report that mice deficient in lymphotoxin, a key molecule in gut immunity, were resistant to DIO. Ltbr−/− mice had different microbial community composition compared to their heterozygous littermates, including an overgrowth of segmented filamentous bacteria (SFB). Furthermore, cecal transplantation conferred leanness to germ-free recipients. Housing Ltbr−/− mice with their obese siblings rescued weight gain in Ltbr−/− mice, demonstrating the communicability of the obese phenotype. Ltbr−/− mice lacked interleukin 23 (IL-23) and IL-22, which can regulate SFB. Mice deficient in these pathways also resisted DIO, demonstrating that intact mucosal immunity guides diet-induced changes to the microbiota to enable obesity.


PLOS ONE | 2010

Regional Mucosa-Associated Microbiota Determine Physiological Expression of TLR2 and TLR4 in Murine Colon

Yunwei Wang; Suzanne Devkota; Mark W. Musch; Bana Jabri; Cathryn R. Nagler; Dionysios A. Antonopoulos; Alexander V. Chervonsky; Eugene B. Chang

Many colonic mucosal genes that are highly regulated by microbial signals are differentially expressed along the rostral-caudal axis. This would suggest that differences in regional microbiota exist, particularly mucosa-associated microbes that are less likely to be transient. We therefore explored this possibility by examining the bacterial populations associated with the normal proximal and distal colonic mucosa in context of host Toll-like receptors (TLR) expression in C57BL/6J mice housed in specific pathogen-free (SPF) and germ-free (GF) environments. 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis revealed significant differences in the community structure and diversity of the mucosa-associated microbiota located in the distal colon compared to proximal colon and stool, the latter two clustering closely. Differential expression of colonic TLR2 and TLR4 along the proximal-distal axis was also found in SPF mice, but not in GF mice, suggesting that enteric microbes are essential in maintaining the regional expression of these TLRs. TLR2 is more highly expressed in proximal colon and decreases in a gradient to distal while TLR4 expression is highest in distal colon and a gradient of decreased expression to proximal colon is observed. After transfaunation in GF mice, both regional colonization of mucosa-associated microbes and expression of TLRs in the mouse colon were reestablished. In addition, exposure of the distal colon to cecal (proximal) microbiota induced TLR2 expression. These results demonstrate that regional colonic mucosa-associated microbiota determine the region-specific expression of TLR2 and TLR4. Conversely, region-specific host assembly rules are essential in determining the structure and function of mucosa-associated microbial populations. We believe this type of host-microbial mutualism is pivotal to the maintenance of intestinal and immune homeostasis.


Immunological Reviews | 2006

Immune privilege in the gut: the establishment and maintenance of non-responsiveness to dietary antigens and commensal flora.

Onyinye I. Iweala; Cathryn R. Nagler

Summary:  Immune privilege in the gut is the result of a complex interplay between the gut microbiome, gut luminal antigens, and the intestinal epithelial barrier. Composed of both physical and immunochemical components, the intestinal barrier secretes immunoregulatory mediators that promote the generation of tolerogenic antigen‐presenting cells, phagocytic innate immune cells characterized by ‘inflammatory anergy’, and regulatory cells of the adaptive immune system. Innate immune cells mediate controlled transepithelial transport of luminal antigens as far as the mesenteric lymph nodes, where the intestinal and peripheral immune systems intersect. This promotes the generation of adaptive regulatory lymphocytes that actively suppress effector cell responses against gut luminal antigens and flora. The net result is the generation of tolerance to dietary antigens and the maintenance of gut homeostasis. Dysregulation of this complex immunoregulatory network leads to diseases such as food allergy and inflammatory bowel disease. Future therapies for these diseases will likely involve the functional restoration of the barrier and regulatory cell functions at the epithelial/luminal interface.


Journal of Immunology | 2011

MyD88-dependent TLR1/2 signals educate dendritic cells with gut-specific imprinting properties

Sen Wang; Eduardo J. Villablanca; Jaime De Calisto; Daniel Cláudio de Oliveira Gomes; Deanna D. Nguyen; Emiko Mizoguchi; Jonathan C. Kagan; Hans-Christian Reinecker; Nir Hacohen; Cathryn R. Nagler; Ramnik J. Xavier; Bartira Rossi-Bergmann; Yi-Bin Chen; Rune Blomhoff; Scott B. Snapper; J. Rodrigo Mora

Gut-associated dendritic cells (DC) synthesize all-trans retinoic acid, which is required for inducing gut-tropic lymphocytes. Gut-associated DC from MyD88−/− mice, which lack most TLR signals, expressed low levels of retinal dehydrogenases (critical enzymes for all-trans retinoic acid biosynthesis) and were significantly impaired in their ability to induce gut-homing T cells. Pretreatment of extraintestinal DC with a TLR1/2 agonist was sufficient to induce retinal dehydrogenases and to confer these DC with the capacity to induce gut-homing lymphocytes via a mechanism dependent on MyD88 and JNK/MAPK. Moreover, gut-associated DC from TLR2−/− mice, or from mice in which JNK was pharmacologically blocked, were impaired in their education to imprint gut-homing T cells, which correlated with a decreased induction of gut-tropic T cells in TLR2−/− mice upon immunization. Thus, MyD88-dependent TLR2 signals are necessary and sufficient to educate DC with gut-specific imprinting properties and contribute in vivo to the generation of gut-tropic T cells.


Gastroenterology | 2009

Toll-like receptor 4-mediated regulation of spontaneous Helicobacter-dependent colitis in IL-10 deficient mice

Kabir S. Matharu; Emiko Mizoguchi; Carmen Alonso Cotoner; Deanna D. Nguyen; Bethany Mingle; Onyinye I. Iweala; Megan E. McBee; Andrew Stefka; Guenolee Prioult; Kevin M. Haigis; Atul K. Bhan; Scott B. Snapper; Hidehiro Murakami; David B. Schauer; Hans-Christian Reinecker; Atsushi Mizoguchi; Cathryn R. Nagler

BACKGROUND & AIMS The commensal microbiota is believed to have an important role in regulating immune responsiveness and preventing intestinal inflammation. Intestinal microbes produce signals that regulate inflammation via Toll-like receptor (TLR) signaling, but the mechanisms of this process are poorly understood. We investigated the role of the anti-inflammatory cytokine interleukin (IL)-10 in this signaling pathway using a mouse model of colitis. METHODS Clinical, histopathologic, and functional parameters of intestinal inflammation were evaluated in TLR4(-/-), IL-10(-/-), and TLR4(-/-) x IL-10(-/-) mice that were free of specific pathogens and in TLR4(-/-) x IL-10(-/-) mice following eradication and reintroduction of Helicobacter hepaticus. Regulatory T-cell (Treg) function was evaluated by crossing each of the lines with transgenic mice that express green fluorescent protein under control of the endogenous regulatory elements of Foxp3. Apoptotic cells in the colonic lamina propria were detected by a TUNEL assay. RESULTS TLR4-mediated signals have 2 interrelated roles in promoting inflammation in TLR4(-/-) x IL-10(-/-) mice. In the absence of TLR4-mediated signals, secretion of proinflammatory and immunoregulatory cytokines is dysregulated. Tregs (Foxp3(+)) that secrete interferon-gamma and IL-17 accumulate in the colonic lamina propria of TLR4(-/-) x IL-10(-/-) mice and do not prevent inflammation. Aberrant control of epithelial cell turnover results in the persistence of antigen-presenting cells that contain apoptotic epithelial fragments in the colonic lamina propria of Helicobacter-infected TLR4(-/-) mice. CONCLUSIONS In mice that lack both IL-10- and TLR4-mediated signals, aberrant regulatory T-cell function and dysregulated control of epithelial homeostasis combine to exacerbate intestinal inflammation.


PLOS Neglected Tropical Diseases | 2009

Immunologic Responses to Vibrio cholerae in Patients Co-Infected with Intestinal Parasites in Bangladesh

Jason B. Harris; Michael J. Podolsky; Taufiqur Rahman Bhuiyan; Fahima Chowdhury; Ashraful I. Khan; Regina C. LaRocque; Tanya Logvinenko; Jennifer Kendall; Abu Syed Golam Faruque; Cathryn R. Nagler; Edward T. Ryan; Firdausi Qadri; Stephen B. Calderwood

Background Infection with intestinal helminths is common and may contribute to the decreased efficacy of Vibrio cholerae vaccines in endemic compared to non-endemic areas. However, the immunomodulatory effects of concomitant intestinal parasitic infection in cholera patients have not been systematically evaluated. Methods We evaluated V. cholerae-specific immune responses in a cohort of patients with severe cholera. 361 patients completed 21 days of observation and 53 (15%) had evidence of a concomitant intestinal parasitic infection based on direct microscopy. Although there were no significant differences in the vibriocidal or lipopolysaccharide (LPS)-specific immune responses to V. cholerae, helminth-infected cholera patients had decreased fecal and serum IgA immune responses to the B subunit of cholera toxin (CTB) as well as a more modest decrease in serum IgG response to CTB. These findings remained significant for all classes of helminth infection and when controlling for potential confounding variables such as age and nutritional status. Although we hypothesized the differential effect on CTB and LPS immune responses was due to T-cell-dependent immunomodulatory effects of helminth infection, we did not find additional evidence to support a classic Th1 or Th2 polarization of the immune response to V. cholerae infection related to parasite infection. Conclusions/Significance The finding that helminth infection has a profound association with the mucosal humoral immune response to V. cholerae has implications for the development of protective immunity in cholera-endemic areas and provides an additional basis for deworming programs in cholera-endemic areas. Additional studies, including further characterization of the role of T cells in the immune response to human V. cholerae infection and the development of an animal model of co-infection, may provide additional insight into the mechanisms underlying these findings.

Collaboration


Dive into the Cathryn R. Nagler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Onyinye I. Iweala

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott B. Snapper

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge