Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cátia Df Lopes is active.

Publication


Featured researches published by Cátia Df Lopes.


Forensic Science International-genetics | 2015

Forensic miRNA: Potential biomarker for body fluids?

Sarah S. Silva; Cátia Df Lopes; Ana Teixeira; M.J Carneiro de Sousa; Rui Medeiros

In forensic investigation, body fluids represent an important support to professionals when detected, collected and correctly identified. Through many years, various approaches were used, namely serology-based methodologies however, their lack of sensitivity and specificity became difficult to set aside. In order to sidetrack the problem, miRNA profiling surged with a real potential to be used to identify evidences like urine, blood, menstrual blood, saliva, semen and vaginal secretions. MiRNAs are small RNA structures with 20-25 nt whose proprieties makes them less prone to degradation processes when compared to mRNA which is extremely important once, in a crime scene, biological evidences might be exposed to several unfavorable environmental factors. Recently, published studies were able to identify some specific miRNAs, however their results were not always reproducible by others which can possibly be the reflection of different workflow strategies for their profiling studies. Given the current blast of interest in miRNAs, it is important to acknowledge potential limitations of miRNA profiling, yet, the lack of such studies are evident. This review pretends to gather all the information to date and assessed a multitude of factors that have a potential aptitude to discrediting miRNA profiling, such as: methodological approaches, environmental factors, physiological conditions, gender, pathologies and samples storage. It can be asserted that much has yet to be made, but we pretend to highlight a potential answer for the ultimate question: Can miRNA profiling be used as the forensic biomarker for body fluids identification?


Acta Biomaterialia | 2013

Endothelialization of chitosan porous conduits via immobilization of a recombinant fibronectin fragment (rhFNIII7-10).

Isabel F. Amaral; I. Neiva; F. Ferreira da Silva; Susana Sousa; Ana M. Piloto; Cátia Df Lopes; Mário A. Barbosa; Charles James Kirkpatrick; Ana Paula Pêgo

The present study aimed to develop a pre-endothelialized chitosan (CH) porous hollowed scaffold for application in spinal cord regenerative therapies. CH conduits with different degrees of acetylation (DA; 4% and 15%) were prepared, characterized (microstructure, porosity and water uptake) and functionalized with a recombinant fragment of human fibronectin (rhFNIII(7-10)). Immobilized rhFNIII(7-10) was characterized in terms of amount ((125)I-radiolabelling), exposure of cell-binding domains (immunofluorescence) and ability to mediate endothelial cell (EC) adhesion and cytoskeletal rearrangement. Functionalized conduits revealed a linear increase in immobilized rhFNIII(7-10) with rhFNIII(7-10) concentration, and, for the same concentration, higher amounts of rhFNIII(7-10) on DA 4% compared with DA 15%. Moreover, rhFNIII(7-10) concentrations as low as 5 and 20μg ml(-1) in the coupling reaction were shown to provide DA 4% and 15% scaffolds, respectively, with levels of exposed cell-binding domains exceeding those observed on the control (DA 4% scaffolds incubated in a 20μg ml(-1) human fibronectin solution). These grafting conditions proved to be effective in mediating EC adhesion/cytoskeletal organization on CH with DA 4% and 15%, without affecting the endothelial angiogenic potential. rhFNIII(7-10) grafting to CH could be a strategy of particular interest in tissue engineering applications requiring the use of endothelialized porous matrices with tunable degradation rates.


Biomaterials | 2017

BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury

Cátia Df Lopes; Nádia Gonçalves; Carla Pereira Gomes; Maria João Saraiva; Ana Paula Pêgo

Neuron-targeted gene delivery is a promising strategy to treat peripheral neuropathies. Here we propose the use of polymeric nanoparticles based on thiolated trimethyl chitosan (TMCSH) to mediate targeted gene delivery to peripheral neurons upon a peripheral and minimally invasive intramuscular administration. Nanoparticles were grafted with the non-toxic carboxylic fragment of the tetanus neurotoxin (HC) to allow neuron targeting and were explored to deliver a plasmid DNA encoding for the brain-derived neurotrophic factor (BDNF) in a peripheral nerve injury model. The TMCSH-HC/BDNF nanoparticle treatment promoted the release and significant expression of BDNF in neural tissues, which resulted in an enhanced functional recovery after injury as compared to control treatments (vehicle and non-targeted nanoparticles), associated with an improvement in key pro-regenerative events, namely, the increased expression of neurofilament and growth-associated protein GAP-43 in the injured nerves. Moreover, the targeted nanoparticle treatment was correlated with a significantly higher density of myelinated axons in the distal stump of injured nerves, as well as with preservation of unmyelinated axon density as compared with controls and a protective role in injury-denervated muscles, preventing them from denervation. These results highlight the potential of TMCSH-HC nanoparticles as non-viral gene carriers to deliver therapeutic genes into the peripheral neurons and thus, pave the way for their use as an effective therapeutic intervention for peripheral neuropathies.


International Journal of Nanomedicine | 2016

In vivo targeted gene delivery to peripheral neurons mediated by neurotropic poly(ethylene imine)-based nanoparticles

Cátia Df Lopes; Hugo M. Oliveira; Inês Estevão; Liliana R. Pires; Ana Paula Pêgo

A major challenge in neuronal gene therapy is to achieve safe, efficient, and minimally invasive transgene delivery to neurons. In this study, we report the use of a nonviral neurotropic poly(ethylene imine)-based nanoparticle that is capable of mediating neuron-specific transfection upon a subcutaneous injection. Nanoparticles were targeted to peripheral neurons by using the nontoxic carboxylic fragment of tetanus toxin (HC), which, besides being neurotropic, is capable of being retrogradely transported from neuron terminals to the cell bodies. Nontargeted particles and naked plasmid DNA were used as control. Five days after treatment by subcutaneous injection in the footpad of Wistar rats, it was observed that 56% and 64% of L4 and L5 dorsal root ganglia neurons, respectively, were expressing the reporter protein. The delivery mediated by HC-functionalized nanoparticles spatially limited the transgene expression, in comparison with the controls. Histological examination revealed no significant adverse effects in the use of the proposed delivery system. These findings demonstrate the feasibility and safety of the developed neurotropic nanoparticles for the minimally invasive delivery of genes to the peripheral nervous system, opening new avenues for the application of gene therapy strategies in the treatment of peripheral neuropathies.


Acta Biomaterialia | 2016

A high-throughput bioimaging study to assess the impact of chitosan-based nanoparticle degradation on DNA delivery performance

Carla Pereira Gomes; Aida Varela-Moreira; Victoria Leiro; Cátia Df Lopes; Pedro M. D. Moreno; Maria Gomez-Lazaro; Ana Paula Pêgo

By using imaging flow cytometry as a powerful statistical high-throughput technique we investigated the impact of degradation on the biological performance of trimethyl chitosan (TMC)-based nanoparticles (NPs). In order to achieve high transfection efficiencies, a precise balance between NP stability and degradation must occur. We altered the biodegradation rate of the TMC NPs by varying the degree of acetylation (DA) of the polymer (DA ranged from 4 to 21%), giving rise to NPs with different enzymatic degradation profiles. While this parameter did not affect NP size, charge or ability to protect plasmid DNA, NPs based on TMC with an intermediate DA (16%) showed the highest transfection efficiency. Subsequently, by means of a single quantitative technique, we were able to follow, for each tested formulation, major steps of the NP-mediated gene delivery process - NP cell membrane association, internalization and intracellular trafficking, including plasmid DNA transport towards the nucleus. NP cytotoxicity was also possible to determine by quantification of cell apoptosis. Overall, the obtained data revealed that the biodegradation rate of these NPs affects their intracellular trafficking and, consequently, their efficiency to transfect cells. Thus, one can use the polymer DA to modulate the NPs towards attaining different degradation rates and tune their bioactivity according to the desired application. Furthermore, this novel technical approach revealed to be a valuable tool for the initial steps of nucleic acid vector design. STATEMENT OF SIGNIFICANCE By changing the biodegradation rate of trimethyl chitosan-based nanoparticles (NPs) one was able to alter the NP ability to protect or efficiently release DNA and consequently, to modulate their intracellular dynamics. To address the influence of NP degradation rate in their transfection efficiency we took advantage of imaging flow cytometry, a high-throughput bioimaging technique, to unravel some critical aspects about NP formulation such as the distinction between internalized versus cell-associated/adsorbed NP, and even explore NP intracellular localization. Overall, our work provides novel information about the importance of vector degradation rate for gene delivery into cells, as a way to tune gene expression as a function of the desired application, and advances novel approaches to optimize nanoparticle formulation.


Journal of Materials Science: Materials in Medicine | 2017

Ibuprofen-loaded fibrous patches—taming inhibition at the spinal cord injury site

Liliana R. Pires; Cátia Df Lopes; Daniela Salvador; Daniela N. Rocha; Ana Paula Pêgo

It is now widely accepted that a therapeutic strategy for spinal cord injury (SCI) demands a multi-target approach. Here we propose the use of an easily implantable bilayer polymeric patch based on poly(trimethylene carbonate-co-ε-caprolactone) (P(TMC-CL)) that combines physical guidance cues provided by electrospun aligned fibres and the delivery of ibuprofen, as a mean to reduce the inhibitory environment at the lesion site by taming RhoA activation. Bilayer patches comprised a solvent cast film onto which electrospun aligned fibres have been deposited. Both layers were loaded with ibuprofen. In vitro release (37°C, in phosphate buffered saline) of the drug from the loaded scaffolds under sink condition was found to occur in the first 24 h. The released ibuprofen was shown to retain its bioactivity, as indicated by the reduction of RhoA activation when the neuronal-like cell line ND7/23 was challenged with lysophosphatidic acid. Ibuprofen-loaded P(TMC-CL) bilayer scaffolds were successfully implanted in vivo in a dorsal hemisection rat SCI model mediating the reduction of RhoA activation after 5 days of implantation in comparison to plain P(TMC-CL) scaffolds. Immunohistochemical analysis of the tissue shows βIII tubulin positive cells close to the ibuprofen-loaded patches further supporting the use of this strategy in the context of regeneration after a lesion in the spinal cord.Graphical abstract


Advanced Healthcare Materials | 2017

Atomic Force Microscopy as a Tool to Assess the Specificity of Targeted Nanoparticles in Biological Models of High Complexity

Carla Pereira Gomes; Cátia Df Lopes; Michael Leitner; Andreas Ebner; Peter Hinterdorfer; Ana Paula Pêgo

The ability to design nanoparticle delivery systems capable of selectively target their payloads to specific cell populations is still a major caveat in nanomedicine. One of the main hurdles is the fact that each nanoparticle formulation needs to be precisely tuned to match the specificities of the target cell and route of administration. In this work, molecular recognition force spectroscopy (MRFS) is presented as a tool to evaluate the specificity of neuron-targeted trimethyl chitosan nanoparticles to neuronal cell populations in biological samples of different complexity. The use of atomic force microscopy tips functionalized with targeted or non-targeted nanoparticles made it possible to assess the specific interaction of each formulation with determined cell surface receptors in a precise fashion. More importantly, the combination of MRFS with fluorescent microscopy allowed to probe the nanoparticles vectoring capacity in models of high complexity, such as primary mixed cultures, as well as specific subcellular regions in histological tissues. Overall, this work contributes for the establishment of MRFS as a powerful alternative technique to animal testing in vector design and opens new avenues for the development of advanced targeted nanomedicines.


Advanced Functional Materials | 2018

Dendrimers as Powerful Building Blocks in Central Nervous System Disease: Headed for Successful Nanomedicine

Victoria Leiro; Sofia Duque Santos; Cátia Df Lopes; Ana Paula Pêgo


Nanomedicine: Nanotechnology, Biology and Medicine | 2016

Microfluidic-based platform to mimic the in vivo peripheral administration of neurotropic nanoparticles

Cátia Df Lopes; Carla Pereira Gomes; Estrela Neto; Paula Sampaio; Paulo Aguiar; Ana Paula Pêgo


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

Seeing is believing but quantifying is deciding

Cátia Df Lopes; Maria Gomez-Lazaro; Ana Paula Pêgo

Collaboration


Dive into the Cátia Df Lopes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge