Cátia Salvador
University of Évora
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cátia Salvador.
Agroforestry Systems | 2013
Cátia Salvador; M. Rosário Martins; Henrique Vicente; José Neves; José M. Arteiro; A. Teresa Caldeira
Wild edible mushrooms Amanita ponderosa Malençon and Heim are very appreciated in gastronomy, with high export potential. This species grows in some microclimates, namely in the southwest of the Iberian Peninsula. The results obtained demonstrate that A. ponderosa mushrooms showed different inorganic composition according to their habitat and the molecular data, obtained by M13-PCR, allowed to distinguish the mushrooms at species level and to differentiate the A. ponderosa strains according to their location. Taking into account, on the one hand, that the characterisation of different strains is essential in further commercialisation and certification process and, on the other hand, the molecular studies are quite time consuming and an expensive process, the development of formal models to predict the molecular profile based on inorganic composition comes to be something essential. In the present work, Artificial Neural Networks (ANNs) were used to solve this problem. The ANN selected to predict molecular profile based on inorganic composition has a 6-7-14 topology. A good match between the observed and predicted values was observed. The present findings are wide potential application and both health and economical benefits arise from this study.
Annals of Microbiology | 2009
A. Teresa Caldeira; Cátia Salvador; Fátima Pinto; José M. Arteiro; M. Rosário Martins
Amanita ponderosa is a specie of wild edible mushrooms growing spontaneously in some Mediterranean microclimates, namely in Alentejo and Andaluzia, in the Iberian Peninsula. The nutritional values of these fungi make them highly exportable. Due to the wide diversity of mushrooms in nature, it is essential to differentiate and to identify the various edible species. RAPD markers have been used as a valuable tool to distinguish the different genotypes, although this method has not yet been used toAmanita ponderosa. Two methods were used to establish different genetic fingerprinting patterns of edible mushrooms. Samples ofAmanita ponderosa were collected in six different regions of the southwest of the Iberian Peninsula and compared by RAPD-PCR and MSP-PCR. Additionally, to compare molecular profiles with others genera of edible mushrooms, three species of Basidiomycetes (Pleurotus ostreatus, Lactarius deliciosus andCoriolus versicolor) and an Ascomycete were used. Results showed that some molecular markers discriminate among an Ascomycete from Basidiomycetes (Amanita ponderosa, Pleurotus ostreatus, Lactarius deliciosus andCoriolus versicolor) and discriminate among the different genera within basidiomycetes, as it is expected. Moreover, OPF-6, OPG-2, OPG3 and M13 primes allowed to unravel a level of genetic polymorphism withinAmanita ponderosa mushrooms collected from different geographic origin.
Brazilian Journal of Microbiology | 2013
Carla Ragonezi; A. Teresa Caldeira; M. Rosário Martins; Cátia Salvador; Celeste Santos-Silva; Elsa Ganhão; Krystyna Klimaszewska; Amely Zavattieri
Stone pine (Pinus pinea L.), like other conifers, forms ectomycorrhizas (ECM), which have beneficial impact on plant growth in natural environments and forest ecosystems. An in vitro co-culture of stone pine microshoots with pure mycelia of isolated ECM sporocarps was used to overcome the root growth cessation not only in vitro but also to improve root development during acclimation phase. Pisolithus arhizus (Scop.) Rauschert and Lactarius deliciosus (L. ex Fr.) S.F. Gray fungi, were collected, pure cultured and used in in vitro co-culture with stone pine microshoots. Samples of P. arhizus and L. deliciosus for the in vitro co-cultures were collected from the pine stands southwest Portugal. The in situ characterization was based on their morphotypes. To confirm the identity of the collected material, ITS amplification was applied using the pure cultures derived from the sporocarps. Additionally, a molecular profile using PCR based genomic fingerprinting comparison was executed with other genera of Basidiomycetes and Ascomycetes. Our results showed the effectiveness of the techniques used to amplify DNA polymorphic sequences, which enhances the characterization of the genetic profile of ECM fungi and also provides an option to verify the fungus identity at any stage of plant mycorrhization.
Annals of Microbiology | 2014
Cátia Salvador; M. Rosário Martins; José M. Arteiro; A. Teresa Caldeira
Amanita ponderosa are wild edible mushrooms that grow only in some microclimates, particularly those in the southwestern part of the Iberian Peninsula. Due to the vast diversity of mushrooms in nature, as well as nutrient variability, which is highly dependent on soil type and environmental conditions, it is essential to be able to characterize fungal microbiota that lives in association with mushrooms and to differentiate A. ponderosa strains of different regions for certification purposes. In this study, we characterized the genetic profile of A. ponderosa mushrooms and the fungal strains that live in association with them in their natural habitat and compared the fingerprinting profiles obtained by M13-PCR amplification of the genomic DNA. We found that the predominant fungal isolates living in association with A. ponderosa were Aspergillus spp., Penicillium spp. and Mucor spp. M13-PCR molecular analysis showed that different fungal isolates had different genetic profiles. This approach allowed us to differentiate the different fungi strains isolated from fruiting bodies of A. ponderosa both rapidly and in a reproducible manner and to group them according to genus. Our fingerprinting analyses also distinguished different A. ponderosa mushrooms collected from different regions. Consequently, we conclude that this method is a very discriminatory approach for differentiating both A. ponderosa from different sites and the fungal microbiota that lives in association with these mushrooms.
International Journal of Analytical Chemistry | 2018
Cátia Salvador; M. Rosário Martins; Henrique Vicente; A. Teresa Caldeira
Amanita ponderosa are wild edible mushrooms that grow in some microclimates of Iberian Peninsula. Gastronomically this species is very relevant, due to not only the traditional consumption by the rural populations but also its commercial value in gourmet markets. Mineral characterisation of edible mushrooms is extremely important for certification and commercialization processes. In this study, we evaluate the inorganic composition of Amanita ponderosa fruiting bodies (Ca, K, Mg, Na, P, Ag, Al, Ba, Cd, Cr, Cu, Fe, Mn, Pb, and Zn) and their respective soil substrates from 24 different sampling sites of the southwest Iberian Peninsula (e.g., Alentejo, Andalusia, and Extremadura). Mineral composition revealed high content in macroelements, namely, potassium, phosphorus, and magnesium. Mushrooms showed presence of important trace elements and low contents of heavy metals within the limits of RDI. Bioconcentration was observed for some macro- and microelements, such as K, Cu, Zn, Mg, P, Ag, and Cd. A. ponderosa fruiting bodies showed different inorganic profiles according to their location and results pointed out that it is possible to generate an explanatory model of segmentation, performed with data based on the inorganic composition of mushrooms and soil mineral content, showing the possibility of relating these two types of data.
Medicinal Chemistry Research | 2012
José M. Arteiro; M. Rosário Martins; Cátia Salvador; M. Fátima Candeias; Amin Karmali; A. Teresa Caldeira
e-conservation Journal | 2017
Cátia Salvador; Ana Branco; António Candeias; Ana Teresa Caldeira
Microscopy and Microanalysis | 2015
Cátia Salvador; Maria do Rosário Martins; Ana Teresa Caldeira
Science, technology and cultural heritage: proceedings of the Second International Congress on Science and Technology for the Conservation of Cultural Heritage, Sevilla, Spain, 24-27 June 2014, 2014, ISBN 978-1-138-02744-2, págs. 177-184 | 2014
A. Branco; A. Fialho; Cátia Salvador; António Candeias; Ana Teresa Caldeira; M. F. Candeias; Sérgio Martins; M. Semedo; A. Karmali
Applied Physics A | 2017
Cátia Salvador; Rui Bordalo; Mara Silva; Tânia Rosado; António Candeias; Ana Teresa Caldeira