Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catrina C. Fronick is active.

Publication


Featured researches published by Catrina C. Fronick.


Nature | 2005

Initial sequence of the chimpanzee genome and comparison with the human genome

Tarjei S. Mikkelsen; LaDeana W. Hillier; Evan E. Eichler; Michael C. Zody; David B. Jaffe; Shiaw-Pyng Yang; Wolfgang Enard; Ines Hellmann; Kerstin Lindblad-Toh; Tasha K. Altheide; Nicoletta Archidiacono; Peer Bork; Jonathan Butler; Jean L. Chang; Ze Cheng; Asif T. Chinwalla; Pieter J. de Jong; Kimberley D. Delehaunty; Catrina C. Fronick; Lucinda L. Fulton; Yoav Gilad; Gustavo Glusman; Sante Gnerre; Tina Graves; Toshiyuki Hayakawa; Karen E. Hayden; Xiaoqiu Huang; Hongkai Ji; W. James Kent; Mary Claire King

Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/deletion events, and various chromosomal rearrangements. We use this catalogue to explore the magnitude and regional variation of mutational forces shaping these two genomes, and the strength of positive and negative selection acting on their genes. In particular, we find that the patterns of evolution in human and chimpanzee protein-coding genes are highly correlated and dominated by the fixation of neutral and slightly deleterious alleles. We also use the chimpanzee genome as an outgroup to investigate human population genetics and identify signatures of selective sweeps in recent human evolution.Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/deletion events, and various chromosomal rearrangements. We use this catalogue to explore the magnitude and regional variation of mutational forces shaping these two genomes, and the strength of positive and negative selection acting on their genes. In particular, we find that the patterns of evolution in human and chimpanzee protein-coding genes are highly correlated and dominated by the fixation of neutral and slightly deleterious alleles. We also use the chimpanzee genome as an outgroup to investigate human population genetics and identify signatures of selective sweeps in recent human evolution.


Nature | 2010

Genome remodelling in a basal-like breast cancer metastasis and xenograft.

Li Ding; Matthew J. Ellis; Shunqiang Li; David E. Larson; Ken Chen; John W. Wallis; Christopher C. Harris; Michael D. McLellan; Robert S. Fulton; Lucinda Fulton; Rachel Abbott; Jeremy Hoog; David J. Dooling; Daniel C. Koboldt; Heather K. Schmidt; Joelle Kalicki; Qunyuan Zhang; Lei Chen; Ling Lin; Michael C. Wendl; Joshua F. McMichael; Vincent Magrini; Lisa Cook; Sean McGrath; Tammi L. Vickery; Elizabeth L. Appelbaum; Katherine DeSchryver; Sherri R. Davies; Therese Guintoli; Li Lin

Massively parallel DNA sequencing technologies provide an unprecedented ability to screen entire genomes for genetic changes associated with tumour progression. Here we describe the genomic analyses of four DNA samples from an African-American patient with basal-like breast cancer: peripheral blood, the primary tumour, a brain metastasis and a xenograft derived from the primary tumour. The metastasis contained two de novo mutations and a large deletion not present in the primary tumour, and was significantly enriched for 20 shared mutations. The xenograft retained all primary tumour mutations and displayed a mutation enrichment pattern that resembled the metastasis. Two overlapping large deletions, encompassing CTNNA1, were present in all three tumour samples. The differential mutation frequencies and structural variation patterns in metastasis and xenograft compared with the primary tumour indicate that secondary tumours may arise from a minority of cells within the primary tumour.


Nature | 2011

Comparative and demographic analysis of orang-utan genomes

Devin P. Locke; LaDeana W. Hillier; Wesley C. Warren; Kim C. Worley; Lynne V. Nazareth; Donna M. Muzny; Shiaw-Pyng Yang; Zhengyuan Wang; Asif T. Chinwalla; Patrick Minx; Makedonka Mitreva; Lisa Cook; Kim D. Delehaunty; Catrina C. Fronick; Heather K. Schmidt; Lucinda A. Fulton; Robert S. Fulton; Joanne O. Nelson; Vincent Magrini; Craig S. Pohl; Tina Graves; Chris Markovic; Andy Cree; Huyen Dinh; Jennifer Hume; Christie Kovar; Gerald Fowler; Gerton Lunter; Stephen Meader; Andreas Heger

‘Orang-utan’ is derived from a Malay term meaning ‘man of the forest’ and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orang-utan draft genome assembly and short read sequence data from five Sumatran and five Bornean orang-utan genomes. Our analyses reveal that, compared to other primates, the orang-utan genome has many unique features. Structural evolution of the orang-utan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe a primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orang-utan genome structure. Orang-utans have extremely low energy usage for a eutherian mammal, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400,000 years ago, is more recent than most previous studies and underscores the complexity of the orang-utan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (Ne) expanded exponentially relative to the ancestral Ne after the split, while Bornean Ne declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts.


Nature Genetics | 2004

Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid.

Michael McClelland; Kenneth E. Sanderson; Sandra W. Clifton; Phil Latreille; Steffen Porwollik; Aniko Sabo; Rekha Meyer; Tamberlyn Bieri; Phil Ozersky; Michael D. McLellan; C Richard Harkins; Chunyan Wang; Christine Nguyen; Amy Berghoff; Glendoria Elliott; Sara Kohlberg; Cindy Strong; Feiyu Du; Jason Carter; Colin Kremizki; Dan Layman; Shawn Leonard; Hui Sun; Lucinda Fulton; William E. Nash; Tracie L. Miner; Patrick Minx; Kim D. Delehaunty; Catrina C. Fronick; Vincent Magrini

Salmonella enterica serovars often have a broad host range, and some cause both gastrointestinal and systemic disease. But the serovars Paratyphi A and Typhi are restricted to humans and cause only systemic disease. It has been estimated that Typhi arose in the last few thousand years. The sequence and microarray analysis of the Paratyphi A genome indicates that it is similar to the Typhi genome but suggests that it has a more recent evolutionary origin. Both genomes have independently accumulated many pseudogenes among their ∼4,400 protein coding sequences: 173 in Paratyphi A and ∼210 in Typhi. The recent convergence of these two similar genomes on a similar phenotype is subtly reflected in their genotypes: only 30 genes are degraded in both serovars. Nevertheless, these 30 genes include three known to be important in gastroenteritis, which does not occur in these serovars, and four for Salmonella-translocated effectors, which are normally secreted into host cells to subvert host functions. Loss of function also occurs by mutation in different genes in the same pathway (e.g., in chemotaxis and in the production of fimbriae).


Science | 2010

Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome.

Laura Baxter; Sucheta Tripathy; Naveed Ishaque; Nico Boot; Adriana Cabral; Eric Kemen; Marco Thines; Audrey M. V. Ah-Fong; Ryan G. Anderson; Wole Badejoko; Peter D. Bittner-Eddy; Jeffrey L. Boore; Marcus C. Chibucos; Mary Coates; Paramvir Dehal; Kim D. Delehaunty; Suomeng Dong; Polly Downton; Bernard Dumas; Georgina Fabro; Catrina C. Fronick; Susan I. Fuerstenberg; Lucinda Fulton; Elodie Gaulin; Francine Govers; Linda Karen Hughes; Sean Humphray; Rays H. Y. Jiang; Howard S. Judelson; Sophien Kamoun

From Blight to Powdery Mildew Pathogenic effects of microbes on plants have widespread consequences. Witness, for example, the cultural upheavals driven by potato blight in the 1800s. A variety of microbial pathogens continue to afflict crop plants today, driving both loss of yield and incurring the increased costs of control mechanisms. Now, four reports analyze microbial genomes in order to understand better how plant pathogens function (see the Perspective by Dodds). Raffaele et al. (p. 1540) describe how the genome of the potato blight pathogen accommodates transfer to different hosts. Spanu et al. (p. 1543) analyze what it takes to be an obligate biotroph in barley powdery mildew, and Baxter et al. (p. 1549) ask a similar question for a natural pathogen of Arabidopsis. Schirawski et al. (p. 1546) compared genomes of maize pathogens to identify virulence determinants. Better knowledge of what in a genome makes a pathogen efficient and deadly is likely to be useful for improving agricultural crop management and breeding. A group of papers analyzes pathogen genomes to find the roots of virulence, opportunism, and life-style determinants. Many oomycete and fungal plant pathogens are obligate biotrophs, which extract nutrients only from living plant tissue and cannot grow apart from their hosts. Although these pathogens cause substantial crop losses, little is known about the molecular basis or evolution of obligate biotrophy. Here, we report the genome sequence of the oomycete Hyaloperonospora arabidopsidis (Hpa), an obligate biotroph and natural pathogen of Arabidopsis thaliana. In comparison with genomes of related, hemibiotrophic Phytophthora species, the Hpa genome exhibits dramatic reductions in genes encoding (i) RXLR effectors and other secreted pathogenicity proteins, (ii) enzymes for assimilation of inorganic nitrogen and sulfur, and (iii) proteins associated with zoospore formation and motility. These attributes comprise a genomic signature of evolution toward obligate biotrophy.


Cancer Cell | 2014

Functional Heterogeneity of Genetically Defined Subclones in Acute Myeloid Leukemia

Jeffery M. Klco; David H. Spencer; Christopher A. Miller; Malachi Griffith; Tamara Lamprecht; Michelle O’Laughlin; Catrina C. Fronick; Vincent Magrini; Ryan Demeter; Robert S. Fulton; William C. Eades; Daniel C. Link; Timothy A. Graubert; Matthew J. Walter; Elaine R. Mardis; John F. DiPersio; Richard Wilson; Timothy J. Ley

The relationships between clonal architecture and functional heterogeneity in acute myeloid leukemia (AML) samples are not yet clear. We used targeted sequencing to track AML subclones identified by whole-genome sequencing using a variety of experimental approaches. We found that virtually all AML subclones trafficked from the marrow to the peripheral blood, but some were enriched in specific cell populations. Subclones showed variable engraftment potential in immunodeficient mice. Xenografts were predominantly comprised of a single genetically defined subclone, but there was no predictable relationship between the engrafting subclone and the evolutionary hierarchy of the leukemia. These data demonstrate the importance of integrating genetic and functional data in studies of primary cancer samples, both in xenograft models and in patients.


PLOS ONE | 2010

Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species.

Eva Kucerova; Sandra W. Clifton; Xiao-Qin Xia; Fred Long; Steffen Porwollik; Lucinda Fulton; Catrina C. Fronick; Patrick Minx; Kim Kyung; Wesley C. Warren; Robert S. Fulton; Dongyan Feng; Aye Wollam; Neha Shah; Veena Bhonagiri; William E. Nash; Kymberlie Hallsworth-Pepin; Richard Wilson; Michael McClelland; Stephen J. Forsythe

Background The genus Cronobacter (formerly called Enterobacter sakazakii) is composed of five species; C. sakazakii, C. malonaticus, C. turicensis, C. muytjensii, and C. dublinensis. The genus includes opportunistic human pathogens, and the first three species have been associated with neonatal infections. The most severe diseases are caused in neonates and include fatal necrotizing enterocolitis and meningitis. The genetic basis of the diversity within the genus is unknown, and few virulence traits have been identified. Methodology/Principal Findings We report here the first sequence of a member of this genus, C. sakazakii strain BAA-894. The genome of Cronobacter sakazakii strain BAA-894 comprises a 4.4 Mb chromosome (57% GC content) and two plasmids; 31 kb (51% GC) and 131 kb (56% GC). The genome was used to construct a 387,000 probe oligonucleotide tiling DNA microarray covering the whole genome. Comparative genomic hybridization (CGH) was undertaken on five other C. sakazakii strains, and representatives of the four other Cronobacter species. Among 4,382 annotated genes inspected in this study, about 55% of genes were common to all C. sakazakii strains and 43% were common to all Cronobacter strains, with 10–17% absence of genes. Conclusions/Significance CGH highlighted 15 clusters of genes in C. sakazakii BAA-894 that were divergent or absent in more than half of the tested strains; six of these are of probable prophage origin. Putative virulence factors were identified in these prophage and in other variable regions. A number of genes unique to Cronobacter species associated with neonatal infections (C. sakazakii, C. malonaticus and C. turicensis) were identified. These included a copper and silver resistance system known to be linked to invasion of the blood-brain barrier by neonatal meningitic strains of Escherichia coli. In addition, genes encoding for multidrug efflux pumps and adhesins were identified that were unique to C. sakazakii strains from outbreaks in neonatal intensive care units.


JAMA | 2011

Identification of a Novel TP53 Cancer Susceptibility Mutation Through Whole-Genome Sequencing of a Patient With Therapy-Related AML

Daniel C. Link; Laura G. Schuettpelz; Dong Shen; Jinling Wang; Matthew J. Walter; Shashikant Kulkarni; Jacqueline E. Payton; Jennifer Ivanovich; Paul J. Goodfellow; Michelle M. Le Beau; Daniel C. Koboldt; David J. Dooling; Robert S. Fulton; R. Hugh F. Bender; Lucinda Fulton; Kimberly D. Delehaunty; Catrina C. Fronick; Elizabeth L. Appelbaum; Heather K. Schmidt; Rachel Abbott; Michelle O'Laughlin; Ken Chen; Michael D. McLellan; Nobish Varghese; Rakesh Nagarajan; Sharon Heath; Timothy A. Graubert; Li Ding; Timothy J. Ley; Gerard P. Zambetti

CONTEXT The identification of patients with inherited cancer susceptibility syndromes facilitates early diagnosis, prevention, and treatment. However, in many cases of suspected cancer susceptibility, the family history is unclear and genetic testing of common cancer susceptibility genes is unrevealing. OBJECTIVE To apply whole-genome sequencing to a patient without any significant family history of cancer but with suspected increased cancer susceptibility because of multiple primary tumors to identify rare or novel germline variants in cancer susceptibility genes. DESIGN, SETTING, AND PARTICIPANT: Skin (normal) and bone marrow (leukemia) DNA were obtained from a patient with early-onset breast and ovarian cancer (negative for BRCA1 and BRCA2 mutations) and therapy-related acute myeloid leukemia (t-AML) and analyzed with the following: whole-genome sequencing using paired-end reads, single-nucleotide polymorphism (SNP) genotyping, RNA expression profiling, and spectral karyotyping. MAIN OUTCOME MEASURES Structural variants, copy number alterations, single-nucleotide variants, and small insertions and deletions (indels) were detected and validated using the described platforms. RESULTS; Whole-genome sequencing revealed a novel, heterozygous 3-kilobase deletion removing exons 7-9 of TP53 in the patients normal skin DNA, which was homozygous in the leukemia DNA as a result of uniparental disomy. In addition, a total of 28 validated somatic single-nucleotide variations or indels in coding genes, 8 somatic structural variants, and 12 somatic copy number alterations were detected in the patients leukemia genome. CONCLUSION Whole-genome sequencing can identify novel, cryptic variants in cancer susceptibility genes in addition to providing unbiased information on the spectrum of mutations in a cancer genome.


Nature | 2014

Gibbon genome and the fast karyotype evolution of small apes.

Lucia Carbone; R. Alan Harris; Sante Gnerre; Krishna R. Veeramah; Belen Lorente-Galdos; John Huddleston; Thomas J. Meyer; Javier Herrero; Christian Roos; Bronwen Aken; Fabio Anaclerio; Nicoletta Archidiacono; Carl Baker; Daniel Barrell; Mark A. Batzer; Kathryn Beal; Antoine Blancher; Craig Bohrson; Markus Brameier; Michael S. Campbell; Claudio Casola; Giorgia Chiatante; Andrew Cree; Annette Damert; Pieter J. de Jong; Laura Dumas; Marcos Fernandez-Callejo; Paul Flicek; Nina V. Fuchs; Ivo Gut

Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation ∼5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat.


The New England Journal of Medicine | 2016

TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes

John S. Welch; Allegra A. Petti; Christopher A. Miller; Catrina C. Fronick; Michelle O’Laughlin; Robert S. Fulton; Richard Wilson; Jack Baty; Eric J. Duncavage; Bevan Tandon; Yi-Shan Lee; Lukas D. Wartman; Geoffrey L. Uy; Armin Ghobadi; Michael H. Tomasson; Iskra Pusic; Rizwan Romee; Todd A. Fehniger; Keith Stockerl-Goldstein; Ravi Vij; Stephen T. Oh; Camille N. Abboud; Amanda F. Cashen; Mark A. Schroeder; Meagan A. Jacoby; Sharon Heath; Kierstin Luber; M R Janke; Andrew Hantel; Niloufer Khan

BACKGROUND The molecular determinants of clinical responses to decitabine therapy in patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS) are unclear. METHODS We enrolled 84 adult patients with AML or MDS in a single-institution trial of decitabine to identify somatic mutations and their relationships to clinical responses. Decitabine was administered at a dose of 20 mg per square meter of body-surface area per day for 10 consecutive days in monthly cycles. We performed enhanced exome or gene-panel sequencing in 67 of these patients and serial sequencing at multiple time points to evaluate patterns of mutation clearance in 54 patients. An extension cohort included 32 additional patients who received decitabine in different protocols. RESULTS Of the 116 patients, 53 (46%) had bone marrow blast clearance (<5% blasts). Response rates were higher among patients with an unfavorable-risk cytogenetic profile than among patients with an intermediate-risk or favorable-risk cytogenetic profile (29 of 43 patients [67%] vs. 24 of 71 patients [34%], P<0.001) and among patients with TP53 mutations than among patients with wild-type TP53 (21 of 21 [100%] vs. 32 of 78 [41%], P<0.001). Previous studies have consistently shown that patients with an unfavorable-risk cytogenetic profile and TP53 mutations who receive conventional chemotherapy have poor outcomes. However, in this study of 10-day courses of decitabine, neither of these risk factors was associated with a lower rate of overall survival than the rate of survival among study patients with intermediate-risk cytogenetic profiles. CONCLUSIONS Patients with AML and MDS who had cytogenetic abnormalities associated with unfavorable risk, TP53 mutations, or both had favorable clinical responses and robust (but incomplete) mutation clearance after receiving serial 10-day courses of decitabine. Although these responses were not durable, they resulted in rates of overall survival that were similar to those among patients with AML who had an intermediate-risk cytogenetic profile and who also received serial 10-day courses of decitabine. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT01687400 .).

Collaboration


Dive into the Catrina C. Fronick's collaboration.

Top Co-Authors

Avatar

Robert S. Fulton

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Christopher A. Miller

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Timothy J. Ley

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Richard Wilson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Matthew J. Walter

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Daniel C. Link

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Michelle O'Laughlin

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Vincent Magrini

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

David E. Larson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Lucinda Fulton

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge