Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cavan Reilly is active.

Publication


Featured researches published by Cavan Reilly.


Nature | 2005

Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells.

Qingsheng Li; Lijie Duan; Jacob D. Estes; Zhong-Min Ma; Tracy Rourke; Yichuan Wang; Cavan Reilly; John V. Carlis; Christopher J. Miller; Ashley T. Haase

In early simian immunodeficiency virus (SIV) and human immunodeficiency virus-1 (HIV-1) infections, gut-associated lymphatic tissue (GALT), the largest component of the lymphoid organ system, is a principal site of both virus production and depletion of primarily lamina propria memory CD4+ T cells; that is, CD4-expressing T cells that previously encountered antigens and microbes and homed to the lamina propria of GALT. Here, we show that peak virus production in gut tissues of SIV-infected rhesus macaques coincides with peak numbers of infected memory CD4+ T cells. Surprisingly, most of the initially infected memory cells were not, as expected, activated but were instead immunophenotypically ‘resting’ cells that, unlike truly resting cells, but like the first cells mainly infected at other mucosal sites and peripheral lymph nodes, are capable of supporting virus production. In addition to inducing immune activation and thereby providing activated CD4+ T-cell targets to sustain infection, virus production also triggered an immunopathologically limiting Fas–Fas-ligand-mediated apoptotic pathway in lamina propria CD4+ T cells, resulting in their preferential ablation. Thus, SIV exploits a large, resident population of resting memory CD4+ T cells in GALT to produce peak levels of virus that directly (through lytic infection) and indirectly (through apoptosis of infected and uninfected cells) deplete CD4+ T cells in the effector arm of GALT. The scale of this CD4+ T-cell depletion has adverse effects on the immune system of the host, underscoring the importance of developing countermeasures to SIV that are effective before infection of GALT.


Nature | 2009

Glycerol monolaurate prevents mucosal SIV transmission

Qingsheng Li; Jacob D. Estes; Patrick M. Schlievert; Lijie Duan; Amanda J. Brosnahan; Peter J. Southern; Cavan Reilly; Marnie L. Peterson; Nancy Schultz-Darken; Kevin Brunner; Karla R. Nephew; Stefan E. Pambuccian; Jeffrey D. Lifson; John V. Carlis; Ashley T. Haase

Although there has been great progress in treating human immunodeficiency virus 1 (HIV-1) infection, preventing transmission has thus far proven an elusive goal. Indeed, recent trials of a candidate vaccine and microbicide have been disappointing, both for want of efficacy and concerns about increased rates of transmission. Nonetheless, studies of vaginal transmission in the simian immunodeficiency virus (SIV)–rhesus macaque (Macacca mulatta) model point to opportunities at the earliest stages of infection in which a vaccine or microbicide might be protective, by limiting the expansion of infected founder populations at the portal of entry. Here we show in this SIV–macaque model, that an outside-in endocervical mucosal signalling system, involving MIP-3α (also known as CCL20), plasmacytoid dendritic cells and CCR5+ cell-attracting chemokines produced by these cells, in combination with the innate immune and inflammatory responses to infection in both cervix and vagina, recruits CD4+ T cells to fuel this obligate expansion. We then show that glycerol monolaurate—a widely used antimicrobial compound with inhibitory activity against the production of MIP-3α and other proinflammatory cytokines—can inhibit mucosal signalling and the innate and inflammatory response to HIV-1 and SIV in vitro, and in vivo it can protect rhesus macaques from acute infection despite repeated intra-vaginal exposure to high doses of SIV. This new approach, plausibly linked to interfering with innate host responses that recruit the target cells necessary to establish systemic infection, opens a promising new avenue for the development of effective interventions to block HIV-1 mucosal transmission.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues

Courtney V. Fletcher; Kathryn Staskus; Stephen W. Wietgrefe; Meghan Rothenberger; Cavan Reilly; Jeffrey G. Chipman; Greg J. Beilman; Alexander Khoruts; Ann Thorkelson; Thomas E. Schmidt; Jodi Anderson; Katherine E. Perkey; Mario Stevenson; Alan S. Perelson; Ashley T. Haase; Timothy W. Schacker

Significance We show that HIV continues to replicate in the lymphatic tissues of some individuals taking antiretroviral regimens considered fully suppressive, based on undetectable viral loads in peripheral blood, and that one mechanism for persistent replication in lymphatic tissues is the lower concentrations of the antiretroviral drugs in those tissues compared with peripheral blood. These findings are significant because they provide a rationale and framework for testing the efficacy of new agents and combinations of drugs that will fully suppress replication in lymphatic tissues. More suppressive regimens could improve immune reconstitution, as well as provide the effective regimens needed for functional cure and eradication of infection. Antiretroviral therapy can reduce HIV-1 to undetectable levels in peripheral blood, but the effectiveness of treatment in suppressing replication in lymphoid tissue reservoirs has not been determined. Here we show in lymph node samples obtained before and during 6 mo of treatment that the tissue concentrations of five of the most frequently used antiretroviral drugs are much lower than in peripheral blood. These lower concentrations correlated with continued virus replication measured by the slower decay or increases in the follicular dendritic cell network pool of virions and with detection of viral RNA in productively infected cells. The evidence of persistent replication associated with apparently suboptimal drug concentrations argues for development and evaluation of novel therapeutic strategies that will fully suppress viral replication in lymphatic tissues. These strategies could avert the long-term clinical consequences of chronic immune activation driven directly or indirectly by low-level viral replication to thereby improve immune reconstitution.


The Journal of Infectious Diseases | 2006

Premature Induction of an Immunosuppressive Regulatory T Cell Response during Acute Simian Immunodeficiency Virus Infection

Jacob D. Estes; Qingsheng Li; Matthew R. Reynolds; Stephen W. Wietgrefe; Lijie Duan; Timothy W. Schacker; Louis J. Picker; David I. Watkins; Jeffrey D. Lifson; Cavan Reilly; John V. Carlis; Ashley T. Haase

Here we report the results of an investigation into the possibility that one mechanism responsible for the establishment of persistent human immunodeficiency virus infection is an early regulatory T (Treg) cell response that blunts virus-specific responses. Using the simian immunodeficiency virus (SIV)-infected rhesus macaque model, we show that, indeed, viral replication and immune activation in lymphatic tissue drive a premature immunosuppressive response, with dramatic increases in the frequencies of CD4+CD25+FOXP3+ Treg cells, transforming growth factor- beta 1+ cells, interleukin-10+ cells, and indoleamine 2,3-dioxygenase+CD3+ cells. When we compared SIV infection with rhesus cytomegalovirus (RhCMV) infection, we found that the frequency of Treg cells paralleled the magnitude of immune activation during both infections but that the magnitude of immune activation and of the Treg cell response were lower and peaked much later during RhCMV infection. Importantly, the frequency of Treg cells inversely correlated with the magnitude of the SIV-specific cytotoxic T lymphocyte response. We conclude that an early Treg cell response during acute SIV infection may contribute to viral persistence by prematurely limiting the antiviral immune response before infection is cleared.


Journal of Clinical Investigation | 2002

Collagen deposition in HIV-1 infected lymphatic tissues and T cell homeostasis.

Timothy W. Schacker; Phuong Nguyen; Gregory J. Beilman; Steven M. Wolinsky; Matthew Larson; Cavan Reilly; Ashley T. Haase

Lymphatic tissues (LTs) are structurally organized to promote interaction between antigens, chemokines, growth factors, and lymphocytes to generate an immunologic response and maintain normal-sized populations of CD4(+) and CD8(+) T cells. Inflammation and tissue remodeling that accompany local innate and adaptive immune responses to HIV-1 replication cause damage to the LT architecture. As a result, normal populations of CD4(+) and CD8(+) T cells cannot be supported and antigen-lymphocyte interactions are impaired. This conclusion is supported herein following LT sampling before and during anti-HIV therapy in persons with acute, chronic, and late-stage HIV-1 infection. Among seven individuals treated with anti-retroviral therapy (ART) and four individuals deferring therapy we found evidence of significant paracortical T cell zone damage associated with deposition of collagen, the extent of which was inversely correlated with both the size of the LT CD4(+) T cell population and the change in peripheral CD4(+) T cell count with anti-HIV therapy. The HIV-1-associated inflammatory changes and scarring in LT both limit the ability of the tissue to support and reestablish normal-sized populations of CD4(+) T cells and suggest a novel mechanism of T cell depletion that may explain the failure of ART to significantly increase CD4(+) T cell populations in some HIV-1-infected persons.


Journal of Clinical Investigation | 2011

Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections.

Ming Zeng; Anthony J. Smith; Stephen W. Wietgrefe; Peter J. Southern; Timothy W. Schacker; Cavan Reilly; Jacob D. Estes; Gregory F. Burton; Guido Silvestri; Jeffrey D. Lifson; John V. Carlis; Ashley T. Haase

The hallmark of HIV-1 and SIV infections is CD4(+) T cell depletion. Both direct cell killing and indirect mechanisms related to immune activation have been suggested to cause the depletion of T cells. We have now identified a mechanism by which immune activation-induced fibrosis of lymphoid tissues leads to depletion of naive T cells in HIV-1 infected patients and SIV-infected rhesus macaques. The T regulatory cell response to immune activation increased procollagen production and subsequent deposition as fibrils via the TGF-β1 signaling pathway and chitinase 3-like-1 activity in fibroblasts in lymphoid tissues from patients infected with HIV-1. Collagen deposition restricted T cell access to the survival factor IL-7 on the fibroblastic reticular cell (FRC) network, resulting in apoptosis and depletion of T cells, which, in turn, removed a major source of lymphotoxin-β, a survival factor for FRCs during SIV infection in rhesus macaques. The resulting loss of FRCs and the loss of IL-7 produced by FRCs may thus perpetuate a vicious cycle of depletion of T cells and the FRC network. Because this process is cumulative, early treatment and antifibrotic therapies may offer approaches to moderate T cell depletion and improve immune reconstitution during HIV-1 infection.


Science | 2009

Visualizing antigen-specific and infected cells in situ predicts outcomes in early viral infection

Qingsheng Li; Pamela J. Skinner; Sang Jun Ha; Lijie Duan; Teresa L. Mattila; Aaron Hage; Cara White; Daniel L. Barber; Leigh A. O'Mara; Peter J. Southern; Cavan Reilly; John V. Carlis; Christopher J. Miller; Rafi Ahmed; Ashley T. Haase

In the early stages of viral infection, outcomes depend on a race between expansion of infection and the immune response generated to contain it. We combined in situ tetramer staining with in situ hybridization to visualize, map, and quantify relationships between immune effector cells and their targets in tissues. In simian immunodeficiency virus infections in macaques and lymphocytic choriomeningitis virus infections in mice, the magnitude and timing of the establishment of an excess of effector cells versus targets were found to correlate with the extent of control and the infection outcome (i.e., control and clearance versus partial or poor control and persistent infection). This method highlights the importance of the location, timing, and magnitude of the immune response needed for a vaccine to be effective against agents of persistent infection, such as HIV-1.


Journal of Immunology | 2008

Early Resolution of Acute Immune Activation and Induction of PD-1 in SIV-Infected Sooty Mangabeys Distinguishes Nonpathogenic from Pathogenic Infection in Rhesus Macaques

Jacob D. Estes; Shari N. Gordon; Ming Zeng; Ann Chahroudi; Richard M. Dunham; Silvija I. Staprans; Cavan Reilly; Guido Silvestri; Ashley T. Haase

Primate lentiviruses are typically apathogenic in their evolutionarily coadapted host species but can be lethal when transferred to new host species. Why such infections are pathogenic in humans and rhesus macaques (RMs) but not in sooty mangabeys (SMs), a natural host, remains unclear. Studies of chronically infected animals point to the importance of diminished immune activation in response to the infection in SMs. In this study, we sought the causes and timing of the differences in immune activation in a comparative study of acute SIV infection in RMs and SMs. Surprisingly, we show that in acute infection immune activation is comparable in SMs and RMs but thereafter, SMs quickly resolve immune activation, whereas RMs did not. Early resolution of immune activation in SMs correlated with increased expression of PD-1 and with preservation of CD4+ T cell counts and lymphatic tissue architecture. These findings point to early control of immune activation by host immunoregulatory mechanisms as a major determinant of the different disease outcomes in SIV infection of natural vs non-natural hosts.


The Journal of Infectious Diseases | 2007

Simian Immunodeficiency virus-Induced Lymphatic Tissue Fibrosis Is Mediated by Transforming Growth Factor β1-positive Regulatory T Cells and Begins in Early Infection

Jacob D. Estes; Stephen W. Wietgrefe; Timothy W. Schacker; Peter J. Southern; Greg J. Beilman; Cavan Reilly; Jeffrey M. Milush; Jeffrey D. Lifson; Donald L. Sodora; John V. Carlis; Ashley T. Haase

In human immunodeficiency virus (HIV) infection, collagen deposition and fibrosis within the T cell zone disrupt the lymphatic tissue architecture, contributing to depletion of CD4(+) T cells and limiting immune reconstitution. We used relevant animal and in vitro models to investigate the kinetics and possible underlying mechanism(s) of this process. In the lymphatic tissue of simian immunodeficiency virus (SIV)-infected rhesus macaques, we observed parallel increases in immune activation, transforming growth factor (TGF) beta 1-positive regulatory T (T(reg)) cells, and collagen type I deposition by 7 days after inoculation, consistent with the hypothesis that early immune activation elicits a countering T(reg) cell response associated with TGF beta 1 expression and collagen deposition. In support of this hypothesis and the possible role of fibrosis in viral pathogenesis, we show (1) spatial colocalization and temporal concordance in levels of TGF beta 1(+) T(reg) cells and collagen deposition; (2) TGF beta 1(+) inducible T(reg) cell stimulation of primary lymphatic tissue fibroblasts to produce collagen type I in vitro; and (3) high levels of immune activation, TGF beta 1(+) T(reg) cells, and collagen deposition in pathogenic SIV infection of macaques, in contrast to apathogenic SIV infection in sooty mangabeys in which levels of immune activation, TGF beta 1(+) T(reg) cells, and collagen deposition were low. We thus conclude that the response of TGF beta 1(+) T(reg) cells to immune activation in early SIV/HIV infection is a double-edged sword: TGF beta 1(+) T(reg) cells normally have a positive effect by limiting immunopathological and autoreactive immune responses, but they also have a negative effect by dampening the antiviral immune response and, as we show here, causing deleterious effects on CD4(+) T cell homeostasis by inducing collagen deposition in lymphatic tissues.


The Journal of Infectious Diseases | 2008

Collagen deposition limits immune reconstitution in the gut.

Jacob D. Estes; Jason V. Baker; Jason M. Brenchley; Alexander Khoruts; Jacob L. Barthold; Anne E. Bantle; Cavan Reilly; Gregory J. Beilman; Mark E. George; Ashley T. Haase; Timothy W. Schacker

Despite suppression of human immunodeficiency virus (HIV) replication by antiretroviral therapy, reconstitution of CD4+ cells is variable and incomplete, particularly in gut-associated lymphatic tissues (GALT). We have previously shown that immune activation and inflammation in HIV-infected and simian immunodeficiency virus-infected lymph nodes results in collagen deposition and disruption of the lymphatic tissue architecture, and this damage contributes to CD4+ cell depletion before treatment and affects the extent of immune reconstitution after treatment. In the present study, we compared collagen deposition and the extent of depletion and reconstitution of total CD4+ cells and subsets in peripheral blood, lymph nodes, and inductive and effector sites in GALT. We show that CD4+ cell depletion in GALT correlates with the rapidity and greater magnitude of collagen deposition in this compartment, compared with that in peripheral lymph nodes, and that although treatment does not restore CD4+ cells to effector sites, treatment in the early stages of infection can increase CD4+ central memory cells in Peyer patches.

Collaboration


Dive into the Cavan Reilly's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lijie Duan

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qingsheng Li

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge