Ce Dou
Third Military Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ce Dou.
Biochimica et Biophysica Acta | 2014
Ce Dou; Chengcheng Zhang; Fei Kang; Xiaochao Yang; Hong Jiang; Yan Bai; Junyu Xiang; Jianzhong Xu; Shiwu Dong
DC-STAMP is a key regulating molecule of osteoclastogenesis and osteoclast precursor (OCP) fusion. Emerging lines of evidence showed that microRNAs play crucial roles in bone metabolism and osteoclast differentiation, but no microRNA has yet been reported to be directly related to OCPs fusion. Through a microarray, we found that the expression of miR-7b in RAW264.7 cells was significantly decreased after induction with M-CSF and RANKL. The overexpression of miR-7b in RAW264.7 cells attenuated the number of TRAP-positive cells number and the formation of multinucleated cells, whereas the inhibition of miR-7b enhanced osteoclastogenesis. Through a dual luciferase reporter assay, we confirmed that miR-7b directly targets DC-STAMP. Other fusogenic molecules, such as CD47, ATP6v0d2, and OC-STAMP, were detected to be down-regulated in accordance with the inhibition of DC-STAMP. Because DC-STAMP also participates in osteoclast differentiation through the ITAM-ITIM network, multiple osteoclast-specific genes in the ITAM-ITIM network were detected to identify how DC-STAMP is involved in this process. The results showed that molecules associated with the ITAM-ITIM network, such as NFATc1 and OSCAR, which are crucial in osteoclastogenesis, were consistently altered due to DC-STAMP inhibition. These findings suggest that miR-7b inhibits osteoclastogenesis and cell-cell fusion by directly targeting DC-STAMP. In addition, the inhibition of DC-STAMP and its downstream signals changed the expression of other fusogenic genes and key regulating genes, such as Nfatc1, c-fos, Akt, Irf8, Mapk1, and Traf6. In conclusion, our findings indicate that miR-7b may be a potential therapeutic target for the treatment of osteoclast-related bone disorders.
Scientific Reports | 2016
Ce Dou; Zhen Cao; Bo Yang; Ning Ding; Tianyong Hou; Fei Luo; Fei Kang; Jianmei Li; Xiaochao Yang; Hong Jiang; Junyu Xiang; Hongyu Quan; Jianzhong Xu; Shiwu Dong
Bone is a dynamic organ continuously undergoing shaping, repairing and remodeling. The homeostasis of bone is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption. Osteoclasts (OCs) are specialized multinucleated cells derived from hematopoietic stem cells (HSCs) or monocytes/macrophage progenitor cells. There are different stages during osteoclastogenesis, and one of the most important steps to form functional osteoclasts is realized by cell-cell fusion. In our study, microarray was performed to detect the expression profiles of lncRNA, mRNA, circRNA and miRNA at different stages during osteoclastogenesis of RAW264.7 cells. Often changed RNAs were selected and clustered among the four groups with Venn analysis. The results revealed that expressions of 518 lncRNAs, 207 mRNAs, 24 circRNAs and 37 miRNAs were often altered at each stage during OC differentiation. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analysis were performed to predict the functions of differentially expressed lncRNAs and co-expressed potential targeting genes. Co-expression networks of lncRNA-mRNA and circRNA-miRNA were constructed based on the correlation analysis between the differentially expressed RNAs. The present study provided a systematic perspective on the potential function of non-coding RNAs (ncRNAs) during osteoclastogenesis.
Journal of Cellular Physiology | 2014
Chengcheng Zhang; Ce Dou; Jianzhong Xu; Shiwu Dong
As a member of the mononuclear phagocyte system, osteoclasts (OC) absorb the bone matrix and participate in bone modeling by keeping a balance with osteoblasts (OB) and stromal cells. Mature OC derive from the fusion of mononuclear osteoclasts (mOC) and the fusion is considered as the indispensable process for the osteoclastogenesis and absorbing activity of OC. DC‐STAMP (dendritic cell‐specific transmembrane protein) has been validated playing a key role in the fusion of mOC. DC‐STAMP is mainly expressed in OC, macrophages and dendritic cells (DC). While DC‐STAMP was discovered in DC, more attentions have been paid to DC‐STAMP in OC in this decade. This review will mainly focus on the function of DC‐STAMP in OC. Studies on DC‐STAMP in DC may also provide new sight for the study of DC‐STAMP in OC. Since the function of DC‐STAMP is still poorly understood and few studies have been implemented for illustration, many issues are still unknown and need to be revealed. We will also discuss these questions in this review. J. Cell. Physiol. 229: 1330–1335, 2014.
Journal of Nanomaterials | 2014
Zhen Cao; Ce Dou; Shiwu Dong
Completely repairing of damaged cartilage is a difficult procedure. In recent years, the use of tissue engineering approach in which scaffolds play a vital role to regenerate cartilage has become a new research field. Investigating the advances in biological cartilage scaffolds has been regarded as the main research direction and has great significance for the construction of artificial cartilage. Native biological materials and synthetic polymeric materials have their advantages and disadvantages. The disadvantages can be overcome through either physical modification or biochemical modification. Additionally, developing composite materials, biomimetic materials, and nanomaterials can make scaffolds acquire better biocompatibility and mechanical adaptability.
Journal of Cellular Physiology | 2016
Ce Dou; Jianmei Li; Fei Kang; Zhen Cao; Xiaochao Yang; Hong Jiang; Bo Yang; Junyu Xiang; Jianzhong Xu; Shiwu Dong
Bone homeostasis is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption. Osteoclasts are multinucleated cells derived from hematopoietic stem cells (HSCs) or monocyte/macrophage progenitor cells and formed by osteoclasts precursors (OCPs) fusion. Cyanidin is an anthocyanin widely distributed in food diet with novel antioxidant activity. However, the effect of cyanidin on osteoclasts is still unknown. We investigated the effect of cyanidin on RANKL‐induced osteoclasts differentiation and cell fusion. The results showed that cyanidin had a dual effect on RANKL‐induced osteoclastogenesis. Lower dosage of cyanidin (< 1µg/ml) has a promoting effect on osteoclastogenesis while higher dosage of cyanidin (> 10µg/ml) has an inhibitory effect. Fusogenic genes like CD9, ATP6v0d2, DC‐STAMP, OC‐STAMP, and osteoclasts related genes like NFATc1, mitf, and c‐fos were all regulated by cyanidin consistent to its dual effect. Further exploration showed that low concentration of cyanidin could increase osteoclasts fusion whereas higher dosage of cyanidin lead to the increase of LXR‐β expression and activation which is suppressive to osteoclasts differentiaton. All these results showed that cyanidin exhibits therapeutic potential in prevention of osteoclasts related bone disorders. J. Cell. Physiol. 231: 558–567, 2016.
ACS Applied Materials & Interfaces | 2016
Junyu Xiang; Jianmei Li; Jian He; Xiangyu Tang; Ce Dou; Zhen Cao; Bo Yu; Chunrong Zhao; Fei Kang; Lu Yang; Shiwu Dong; Xiaochao Yang
Insufficient blood perfusion is one of the critical problems that hamper the clinical application of tissue engineering bone (TEB). Current methods for improving blood vessel distribution in TEB mainly rely on delivering exogenous angiogenic factors to promote the proliferation, migration, differentiation, and vessel formation of endothelial cells (ECs) and/or endothelial progenitor cells (EPCs). However, obstacles including limited activity preservation, difficulty in controlled release, and high cost obstructed the practical application of this strategy. In this study, TEB scaffold were modified with cerium oxide nanoparticles (CNPs) and the effects of CNPs existed at the scaffold surface on the growth and paracrine behavior of mesenchymal stem cells (MSCs) were investigated. The CNPs could improve the proliferation and inhibit the apoptosis of MSCs. Meanwhile, the interaction between the cell membrane and the nanoparticle surface could activate the calcium channel of MSCs leading to the rise of intracellular free Ca(2+) level, which subsequently augments the stability of HIF-1α. These chain reactions finally resulted in high expression of angiogenic factor VEGF. The improved paracrine of VEGF could thereby promote the proliferation, differentiation, and tube formation ability of EPCs. Most importantly, in vivo ectopic bone formation experiment demonstrated this method could significantly improve the blood vessel distribution inside of TEB.
Drug Development Research | 2015
Junying Chen; Min Qiu; Ce Dou; Zhen Cao; Shiwu Dong
Preclinical Research
American Journal of Physiology-cell Physiology | 2016
Ce Dou; Nan Li; Ning Ding; Chuan Liu; Xiaochao Yang; Fei Kang; Zhen Cao; Hongyu Quan; Tianyong Hou; Jianzhong Xu; Shiwu Dong
The bone-resorbing osteoclast (OC) is essential for bone homeostasis, yet deregulation of OCs contributes to diseases such as osteoporosis, osteopetrosis, and rheumatoid arthritis. Here we show that histone deacetylase 2 (HDAC2) is a key positive regulator during receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and bone resorption. Bone marrow macrophages (BMMs) showed increased HDAC2 expression during osteoclastogenesis. HDAC2 overexpression enhanced, whereas HDAC2 deletion suppressed osteoclastogenesis and bone resorption using lentivirus infection. Mechanistically, upon RANKL activation, HDAC2 activated Akt; Akt directly phosphorylates and abrogates Forkhead box protein O1 (FoxO1), which is a negative regulator during osteoclastogenesis through reducing reactive oxygen species. HDAC2 deletion in BMMs resulted in decreased Akt activation and increased FoxO1 activity during osteoclastogenesis. In conclusion, HDAC2 activates Akt thus suppresses FoxO1 transcription results in enhanced osteoclastogenesis. Our data imply the potential value of HDAC2 as a new target in regulating osteoclast differentiation and function.
Osteoporosis International | 2016
Ce Dou; Y. Chen; Ning Ding; Nan Li; Hong Jiang; Chunrong Zhao; Fei Kang; Zhen Cao; Hongyu Quan; Fei Luo; Jianzhong Xu; Shiwu Dong
SummaryXanthotoxin (XAT) is extracted from the seeds of Ammi majus. Here, we reported that XAT has an inhibitory effect on osteoclastogenesis in vitro through the suppression of both receptor activator of nuclear factor-κB ligand (RANKL)-induced ROS generation and Ca2+ oscillations. In vivo studies showed that XAT treatment decreases the osteoclast number, prevents bone loss, and restores bone strength in ovariectomized mice.IntroductionExcessive osteoclast formation and the resultant increase in bone resorption activity are key pathogenic factors of osteoporosis. In the present study, we have investigated the effects of XAT, a natural furanocoumarin, on the RANKL-mediated osteoclastogenesis in vitro and on ovariectomy-mediated bone loss in vivo.MethodsCytotoxicity of XAT was evaluated using bone marrow macrophages (BMMs). Osteoclast differentiation, formation, and fusion were assessed using the tartrate-resistant acid phosphatase (TRAP) stain, the actin cytoskeleton and focal adhesion (FAK) stain, and the fusion assay, respectively. Osteoclastic bone resorption was evaluated using the pit formation assay. Reactive oxygen species (ROS) generation and removal were evaluated using dichlorodihydrofluorescein diacetate (DCFH-DA). Ca2+ oscillations and their downstream signaling targets were then detected. The ovariectomized (OVX) mouse model was adopted for our in vivo studies.ResultsIn vitro assays revealed that XAT inhibited the differentiation, formation, fusion, and bone resorption activity of osteoclasts. The inhibitory effect of XAT on osteoclastogenesis was associated with decreased intracellular ROS generation. XAT treatment also suppressed RANKL-induced Ca2+ oscillations and the activation of the resultant downstream calcium-CaMKK/PYK2 signaling. Through these two mechanisms, XAT downregulated the key osteoclastogenic factors nuclear factor of activated T cells c1 (NFATc1) and c-FOS. Our in vivo studies showed that XAT treatment decreases the osteoclast number, prevents bone loss, rescues bone microarchitecture, and restores bone strength in OVX mice.ConclusionOur findings indicate that XAT is protective against ovariectomy-mediated bone loss through the inhibition of RANKL-mediated osteoclastogenesis. Therefore, XAT may be considered to be a new therapeutic candidate for treating osteoporosis.
Nutrients | 2016
Ce Dou; Zhen Cao; Ning Ding; Tianyong Hou; Fei Luo; Fei Kang; Xiaochao Yang; Hong Jiang; Zhao Xie; Min Hu; Jianzhong Xu; Shiwu Dong
Cordycepin was previously reported to have anti-tumor, anti-inflammatory and anti-oxidant activity. However, the potential role of cordycepin in bone metabolism and cell biology of osteoclasts remains unclear. In our study, we focused on the in vitro effects of cordycepin on osteoclastogenesis and its in vivo effects in ovariectomized (OVX) mice. Osteoclast differentiation, formation and fusion were evaluated by Tartrate-resistant acid phosphatase (TRAP) stain, focal adhesion stain and fusion assay, respectively. Osteoclastic bone resorption was evaluated by pit formation assay. Reactive oxygen species (ROS) generation and removal were detected by the ROS assay. OVX mice were orally administered with 10 mg/kg of cordycepin daily for four weeks. In vitro results revealed that cordycepin inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation, formation, fusion and bone resorption activity. We further proved that cordycepin treatments scavenged the generation of ROS, upregulated interferon regulatory factor 8 (IRF-8) and suppressed the activity of nuclear factor of activated T cells c1 (NFATc1) during osteoclastogenesis. In vivo results indicated cordycepin prevents bone loss, rescues bone microarchitecture, and restores bone mineralization in OVX mice. Our observations strongly suggested that cordycepin is an efficient osteoclast inhibitor and hold potential therapeutic value in preventing bone loss among postmenopausal osteoporosis patients.