Cécile Gaillard
University of Poitiers
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cécile Gaillard.
The Plant Cell | 2003
Birsen Cakir; Alice Agasse; Cécile Gaillard; Amélie Saumonneau; Serge Delrot; Rossitza Atanassova
The function of ASR (ABA [abscisic acid]-, stress-, and ripening-induced) proteins remains unknown. A grape ASR, VvMSA, was isolated by means of a yeast one-hybrid approach using as a target the proximal promoter of a grape putative monosaccharide transporter (VvHT1). This promoter contains two sugar boxes, and its activity is induced by sucrose and glucose. VvMSA and VvHT1 share similar patterns of expression during the ripening of grape. Both genes are inducible by sucrose in grape berry cell culture, and sugar induction of VvMSA is enhanced strongly by ABA. These data suggest that VvMSA is involved in a common transduction pathway of sugar and ABA signaling. Gel-shift assays demonstrate a specific binding of VvMSA to the 160-bp fragment of the VvHT1 promoter and more precisely to two sugar-responsive elements present in this target. The positive regulation of VvHT1 promoter activity by VvMSA also is shown in planta by coexpression experiments. The nuclear localization of the yellow fluorescent protein–VvMSA fusion protein and the functionality of the VvMSA nuclear localization signal are demonstrated. Thus, a biological function is ascribed to an ASR protein. VvMSA acts as part of a transcription-regulating complex involved in sugar and ABA signaling.
Journal of Biological Chemistry | 1996
Markus Klein; Gottfried Weissenböck; Annie Dufaud; Cécile Gaillard; Klaus Kreuz; Enrico Martinoia
Glycosylation of endogenous secondary plant products and abiotic substances such as herbicides increases their water solubility and enables vacuolar deposition of these potentially toxic substances. We characterized and compared the transport mechanisms of two glucosides, isovitexin, a native barley flavonoid C-glucoside and hydroxyprimisulfuron-glucoside, a herbicide glucoside, into barley vacuoles. Uptake of isovitexin is saturable (Km = 82 μM) and stimulated by MgATP 1.3-1.5-fold. ATP-dependent uptake was inhibited by bafilomycin A1, a specific inhibitor of vacuolar H+-ATPase, but not by vanadate. Transport of isovitexin is strongly inhibited after dissipation of the ΔpH or the ΔΨ across the vacuolar membrane. Uptake experiments with the heterologue flavonoid orientin and competition experiments with other phenolic compounds suggest that transport of flavonoid glucosides into barley vacuoles is specific for apigenin derivatives. In contrast, transport of hydroxyprimisulfuron-glucoside is strongly stimulated by MgATP (2.5-3 fold), not sensitive toward bafilomycin, and much less sensitive to dissipation of the ΔpH, but strongly inhibited by vanadate. Uptake of hydroxyprimisulfuron-glucoside is also stimulated by MgGTP or MgUTP by about 2-fold. Transport of both substrates is not stimulated by ATP or Mg2+ alone, ADP, or the nonhydrolyzable ATP analogue 5′-adenylyl-β,γ-imidodiphosphate. Our results suggest that different uptake mechanisms exist in the vacuolar membrane, a ΔpH-dependent uptake mechanism for specific endogenous flavonoid-glucosides, and a directly energized mechanism for abiotic glucosides, which appears to be the main transport system for these substrates. The herbicide glucoside may therefore be transported by an additional member of the ABC transporters.
FEBS Letters | 1999
Rémi Lemoine; Lukas Bürkle; Laurence Barker; Soulaiman Sakr; Christina Kühn; Matthieu Régnacq; Cécile Gaillard; Serge Delrot; Wolf B. Frommer
Pollen cells are symplasmically isolated during maturation and germination. Pollen therefore needs to take up nutrients via membrane carriers. Physiological measurements on pollen indicate sucrose transport in the pollen tube. A cDNA encoding a pollen-specific sucrose transporter-like protein NtSUT3 was isolated from a tobacco pollen cDNA library. NtSUT3 expression is detected only in pollen and is restricted to late pollen development, pollen germination and pollen tube growth. Altogether these data indicate that pollen is supplied not only with glucose, but also with sucrose through a specific sucrose transporter. The respective contribution of each transport pathway may change during pollen tube growth.
Plant Physiology | 2003
Rossitza Atanassova; Marina Leterrier; Cécile Gaillard; Alice Agasse; Emeric Sagot; Pierre Coutos-Thévenot; Serge Delrot
Different lengths of the promoter of grape (Vitis vinifera) VvHT1 (Hexose Transporter 1) gene, which encodes a putative hexose transporter expressed during the ripening of grape, have been transcriptionally fused to the β-glucuronidase reporter gene. In transgenic tobacco (Nicotiana tabacum) transformed with these constructs,VvHT1 promoters were clearly responsible for the sink organ preferential expression. The potential sugar effectors ofVvHT1 promoter were studied in tobacco cv Bright-Yellow 2 cells transformed with chimeric constructs. Glucose (56 mm), sucrose (Suc; 58 mm), and the non-transported Suc isomer palatinose doubled the β-glucuronidase activity conferred by the VvHT1 promoter, whereas fructose did not affect it. These effects were the strongest with the 2.4-kb promoter, which contains all putative sugar-responsive elements (activating and repressing), but they were also significant with the 0.3-kb promoter, which contains only activating sugar boxes. The induction of VvHT1 expression by both Suc and palatinose was confirmed in the homologous grape berry cell culture. The data provide the first example of a putative sugar transporter, which is induced by both glucose and Suc in higher plants. Although induction ofVvHT1 expression by Suc does not require transport, the presence of glucosyl moiety is necessary for Suc sensing. These results provide new insights into sugar sensing and signaling in plants.
FEBS Letters | 1994
Cécile Gaillard; Annie Dufaud; Roberto Tommasini; Klaus Kreuz; Nikolaus Amrhein; Enrico Martinoia
In plants potentially toxic compounds are ultimately deposited in the large central vacuole. In this report we show that isolated barley mesophyll vacuoles take up the glucoside conjugate of the herbicide derivate [5‐hydroxyphenyl]primisulfuron. Transport is stimulated by Mg‐ATP and is distinct from that previously described for glutathione conjugates. Treatment of barley with different herbicide antidotes (safeners) revealed that the safener cloquintocet‐mexyl doubles the vacuolar transport activities for both the glutathione and glucoside conjugates. Stimulation of the uptake of the metolachlor—glutathione conjugate was the result of an increased uptake velocity whereas the K m remained unaltered, suggesting that the higher activity was due to a higher expression of the transporter. These results indicate that modulation of vacuolar transport activities are an integral part of the detoxification mechanism of plants.
Molecular Plant-microbe Interactions | 2003
Eric Gomès; Emeric Sagot; Cécile Gaillard; Laurent Laquitaine; Benoît Poinssot; Yves-Henri Sanejouand; Serge Delrot; Pierre Coutos-Thévenot
Nonspecific lipid transfer proteins (nsLTPs) are small, basic cystein-rich proteins believed to be involved in plant defense mechanisms. Three cDNAs coding nsLTPs from grape (Vitis vinifera sp.) were cloned by reverse-transcriptase-polymerase chain reaction (RT-PCR) and PCR. The expression of nsLTP genes was investigated in 41B-rootstock grape cell suspension, in response to various defense-related signal molecules. Ergosterol (a fungi-specific sterol) and a proteinaceous elicitor purified from Botrytis cinerea strongly and rapidly induced the accumulation of nsLTP mRNAs. Jasmonic acid, cholesterol, and sitosterol also promoted nsLTPs mRNA accumulation, although to a lesser extent, whereas salicylic acid had no effect. High performance liquid chromatography analysis indicated that the amounts of three LTP isoforms (previously named P1, P2, and P4) were increased by ergosterol. None of the four isoforms displayed any significant antifungal properties, with the exception of the P4 isoform, which reduced Botrytis mycelium growth in vitro, but only in calcium-free medium. The results are discussed in the context of plant-pathogen interactions.
Plant Molecular Biology | 2014
Pauline Lemonnier; Cécile Gaillard; Florian Veillet; Jérémy Verbeke; Rémi Lemoine; Pierre Coutos-Thévenot; Sylvain La Camera
Botrytis cinerea is the causing agent of the grey mold disease in more than 200 crop species. While signaling pathways leading to the basal resistance against this fungus are well described, the role of the import of sugars into host cells remains to be investigated. In Arabidopsis thaliana, apoplastic hexose retrieval is mediated by the activity of sugar transport proteins (STPs). Expression analysis of the 14 STP genes revealed that only STP13 was induced in leaves challenged with B. cinerea. STP13-modified plants were produced and assayed for their resistance to B. cinerea and glucose transport activity. We report that STP13-deficient plants exhibited an enhanced susceptibility and a reduced rate of glucose uptake. Conversely, plants with a high constitutive level of STP13 protein displayed an improved capacity to absorb glucose and an enhanced resistance phenotype. The correlation between STP13 transcripts, protein accumulation, glucose uptake rate and resistance level indicates that STP13 contributes to the basal resistance to B. cinerea by limiting symptom development and points out the importance of the host intracellular sugar uptake in this process. We postulate that STP13 would participate in the active resorption of hexoses to support the increased energy demand to trigger plant defense reactions and to deprive the fungus by changing sugar fluxes toward host cells.
Plant Physiology | 1993
Soulaiman Sakr; Rémi Lemoine; Cécile Gaillard; Serge Delrot
The uptake of sucrose, 3-O-methylglucose (3-O-MeG), and valine were studied in discs and in purified plasma membrane vesicles (PMV) prepared from sugar beet (Beta vulgaris L.) exporting leaves. The uptake capacities of freshly excised leaf discs were compared with the uptake in discs that had been floated for 12 h on a simple medium (aging) and with discs excised from leaves that had been cut from the plant 12 h before the experiments (cutting). After cutting, sucrose uptake amounted to twice the uptake measured in fresh discs, whereas the uptake of 3-O-MeG and valine remained unaffected. In aged leaf discs, there was a general stimulation of uptake, which represented 400, 300, and 400% of the uptake measured in fresh discs for sucrose, 3-O-MeG, and valine, respectively. Sucrose uptake in fresh discs was sensitive to N-ethylmaleimide (NEM), to p-chloromercuribenzenesulfonic acid (PCMBS), and to mersalyl acid (MA). Although cutting induced the appearance of a sucrose uptake system that is poorly sensitive to NEM but sensitive to PCMBS and MA, aging induced the development of an uptake system that is sensitive to NEM but poorly sensitive to PCMBS and MA. Autoradiographs of discs fed with [14C]sucrose show that cutting resulted in an increase of vein labeling with little effect in the mesophyll, whereas aging induced an increase of labeling located mainly in the mesophyll. The data show that cutting is sufficient to induce dramatic and selective changes in the uptake properties of leaf tissues and that the effects of cutting and aging on the uptake of organic solutes are clearly different. Parallel experiments were run with purified PMV prepared from fresh and cut leaves. The uptake of sugars and amino acids was studied after imposition of an artificial proton motive force (pmf). Comparison of the uptake properties of PMV and of leaf tissues indicate that the recovery of the sucrose uptake system in PMV is better than the recovery of the hexose and of the valine uptake systems. As observed with the leaf discs, cutting induced a 2-fold increase of the initial rate of sucrose uptake in PMV but did not affect the uptake of valine and 3-O-MeG. Cutting induced an increase of both Vmax and Km of the sucrose transport system in PMV. Measurements of the pmf imposed on the vesicles indicated that the increase of sucrose uptake induced by cutting was not due to a better integrity of the vesicles. Hexoses did not compete with sucrose for uptake in PMV from fresh and cut leaves, and maltose was a stronger inhibitor of sucrose uptake in PMV from cut leaves than in PMV from fresh leaves. The sensitivity of sucrose uptake to NEM, PCMBS, and MA in PMV from fresh and cut leaves paralleled that described above for the corresponding leaf discs. These data show that (a) the changes induced by cutting on sucrose uptake by leaf discs are due to membrane phenomena and not to the metabolism of sucrose; (b) the study of sucrose uptake with PMV gives a good account of the physiological situation; and (c) the specific effects induced by cutting on the sucrose uptake system are not lost during the preparation of the PMV.
Biochimica et Biophysica Acta | 1992
Ze-Sheng Li; Olivier Gallet; Cécile Gaillard; Rémi Lemoine; Serge Delrot
The proteins from plasma membranes from sugar beet leaves were solubilized by 1% CHAPS and separated by size exclusion chromatography and by ion-exchange chromatography. The fractions enriched in sucrose transporter were monitored in three ways: differential labeling, ELISA, and reconstitution in proteoliposomes. When the plasma membranes were differentially labeled by N-ethylamaleimide in the presence of sucrose, a major peak of differential labeling was found at 120 kDa upon gel filtration. When this peak was recovered, denaturated by sodium dodecyl sulfate and reinjected on the gel filtration column, it yielded a peak of differential labeling at 42 kDa. When unlabeled membranes were used, the fractions eluted from the column were monitored by ELISA for their ability to recognize a serum directed against a 42 kDa previously identified as a putative sucrose carrier. The results paralleled those obtained by differential labeling, i.e. a major ELISA-reactive peak was found at 120 kDa upon gel filtration, and this peak yielded a peak most reactive at 40 kDa after denaturation. The 120 kDa peak prepared from unlabeled membranes was further separated on a Mono-Q column. The fractions were monitored by ELISA as described above, and reconstituted into proteoliposomes using asolectin. Active transport of sucrose, but not of valine could be observed with the reconstituted 120 kDa fraction. When the eluates from the Mono-Q column were reconstituted, the fractions exhibiting highest transport activity were enriched with a 42 kDa band. The data provide the first report concerning reconstitution of sucrose transport activity and confirm the involvement of a 42 kDa polypeptide in sucrose transport.
FEBS Letters | 1991
Ze-Sheng Li; Olivier Gallet; Cécile Gaillard; Rémi Lemoine; Serge Delrot
The proteins of purified plasma membranes from sugar beet (Beta vulgaris L.) leaf were solubilized and separated on a size exclusion column. The fractions eluted from the column were monitored by ELISA with antibodies directed to a putative sucrose carrier protein. The peak most reactive in ELISA was approximately 120 kDa, and yielded a 40 kDa peak after denaturation by SDS. The 120‐kDa peak was recovered and used for reconstitution experiments with asolectin. Upon imposition of an artificial pH gradient and electrical gradient, the obtained proteoliposomes exhibited active transport of sucrose, but not of valine. The active transport of sucrose was inhibited by N‐ethylmaleimide and HgCl2.