Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cécile Haumaitre is active.

Publication


Featured researches published by Cécile Haumaitre.


Nature | 2013

Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b

Jan-Wilhelm Kornfeld; Catherina Baitzel; A. Christine Könner; Hayley T. Nicholls; Merly C. Vogt; Karolin Herrmanns; Ludger Scheja; Cécile Haumaitre; Anna Maria Wolf; Uwe Knippschild; Jost Seibler; Silvia Cereghini; Joerg Heeren; Markus Stoffel; Jens C. Brüning

Insulin resistance represents a hallmark during the development of type 2 diabetes mellitus and in the pathogenesis of obesity-associated disturbances of glucose and lipid metabolism. MicroRNA (miRNA)-dependent post-transcriptional gene silencing has been recognized recently to control gene expression in disease development and progression, including that of insulin-resistant type 2 diabetes. The deregulation of miRNAs miR-143 (ref. 4), miR-181 (ref. 5), and miR-103 and miR-107 (ref. 6) alters hepatic insulin sensitivity. Here we report that the expression of miR-802 is increased in the liver of two obese mouse models and obese human subjects. Inducible transgenic overexpression of miR-802 in mice causes impaired glucose tolerance and attenuates insulin sensitivity, whereas reduction of miR-802 expression improves glucose tolerance and insulin action. We identify Hnf1b (also known as Tcf2) as a target of miR-802-dependent silencing, and show that short hairpin RNA (shRNA)-mediated reduction of Hnf1b in liver causes glucose intolerance, impairs insulin signalling and promotes hepatic gluconeogenesis. In turn, hepatic overexpression of Hnf1b improves insulin sensitivity in Leprdb/db mice. Thus, this study defines a critical role for deregulated expression of miR-802 in the development of obesity-associated impairment of glucose metabolism through targeting of Hnf1b, and assigns Hnf1b an unexpected role in the control of hepatic insulin sensitivity.


Molecular and Cellular Biology | 2008

Histone Deacetylase Inhibitors Modify Pancreatic Cell Fate Determination and Amplify Endocrine Progenitors

Cécile Haumaitre; Olivia Lenoir; Raphael Scharfmann

ABSTRACT During pancreas development, transcription factors play critical roles in exocrine and endocrine differentiation. Transcriptional regulation in eukaryotes occurs within chromatin and is influenced by posttranslational histone modifications (e.g., acetylation) involving histone deacetylases (HDACs). Here, we show that HDAC expression and activity are developmentally regulated in the embryonic rat pancreas. We discovered that pancreatic treatment with different HDAC inhibitors (HDACi) modified the timing and determination of pancreatic cell fate. HDACi modified the exocrine lineage via abolition and enhancement of acinar and ductal differentiation, respectively. Importantly, HDACi treatment promoted the NGN3 proendocrine lineage, leading to an increased pool of endocrine progenitors and modified endocrine subtype lineage choices. Interestingly, treatments with trichostatin A and sodium butyrate, two inhibitors of both class I and class II HDACs, enhanced the pool of β cells. These results highlight the roles of HDACs at key points in exocrine and endocrine differentiation. They show the powerful use of HDACi to switch pancreatic cell determination and amplify specific cellular subtypes, with potential applications in cell replacement therapies in diabetes.


Diabetes | 2011

Specific Control of Pancreatic Endocrine β- and δ-Cell Mass by Class IIa Histone Deacetylases HDAC4, HDAC5, and HDAC9

Olivia Lenoir; Kathleen Flosseau; Feng Xia Ma; Bertrand Blondeau; Antonello Mai; Rhonda Bassel-Duby; Philippe Ravassard; Eric N. Olson; Cécile Haumaitre; Raphael Scharfmann

OBJECTIVE Class IIa histone deacetylases (HDACs) belong to a large family of enzymes involved in protein deacetylation and play a role in regulating gene expression and cell differentiation. Previously, we showed that HDAC inhibitors modify the timing and determination of pancreatic cell fate. The aim of this study was to determine the role of class IIa HDACs in pancreas development. RESEARCH DESIGN AND METHODS We took a genetic approach and analyzed the pancreatic phenotype of mice lacking HDAC4, -5, and -9. We also developed a novel method of lentiviral infection of pancreatic explants and performed gain-of-function experiments. RESULTS We show that class IIa HDAC4, -5, and -9 have an unexpected restricted expression in the endocrine β- and δ-cells of the pancreas. Analyses of the pancreas of class IIa HDAC mutant mice revealed an increased pool of insulin-producing β-cells in Hdac5−/− and Hdac9−/− mice and an increased pool of somatostatin-producing δ-cells in Hdac4−/− and Hdac5−/− mice. Conversely, HDAC4 and HDAC5 overexpression showed a decreased pool of insulin-producing β-cells and somatostatin-producing δ-cells. Finally, treatment of pancreatic explants with the selective class IIa HDAC inhibitor MC1568 enhances expression of Pax4, a key factor required for proper β-and δ-cell differentiation and amplifies endocrine β- and δ-cells. CONCLUSIONS We conclude that HDAC4, -5, and -9 are key regulators to control the pancreatic β/δ-cell lineage. These results highlight the epigenetic mechanisms underlying the regulation of endocrine cell development and suggest new strategies for β-cell differentiation-based therapies.


Development | 2008

Crucial role of vHNF1 in vertebrate hepatic specification

Ludmilla Lokmane; Cécile Haumaitre; Pilar Garcia-Villalba; Isabelle Anselme; Sylvie Schneider-Maunoury; Silvia Cereghini

Mouse liver induction occurs via the acquisition of ventral endoderm competence to respond to inductive signals from adjacent mesoderm, followed by hepatic specification. Little is known about the regulatory circuit involved in these processes. Through the analysis of vHnf1 (Hnf1b)-deficient embryos, generated by tetraploid embryo complementation, we demonstrate that lack of vHNF1 leads to defective hepatic bud formation and abnormal gut regionalization. Thickening of the ventral hepatic endoderm and expression of known hepatic genes do not occur. At earlier stages, hepatic specification of vHnf1-/- ventral endoderm is disrupted. More importantly, mutant ventral endoderm cultured in vitro loses its responsiveness to inductive FGF signals and fails to induce the hepatic-specification genes albumin and transthyretin. Analysis of liver induction in zebrafish indicates a conserved role of vHNF1 in vertebrates. Our results reveal the crucial role of vHNF1 at the earliest steps of liver induction: the acquisition of endoderm competence and the hepatic specification.


Development | 2015

Hnf1b controls pancreas morphogenesis and the generation of Ngn3+ endocrine progenitors

De Vas Mg; Janel L. Kopp; Heliot C; Maike Sander; Silvia Cereghini; Cécile Haumaitre

Heterozygous mutations in the human HNF1B gene are associated with maturity-onset diabetes of the young type 5 (MODY5) and pancreas hypoplasia. In mouse, Hnf1b heterozygous mutants do not exhibit any phenotype, whereas the homozygous deletion in the entire epiblast leads to pancreas agenesis associated with abnormal gut regionalization. Here, we examine the specific role of Hnf1b during pancreas development, using constitutive and inducible conditional inactivation approaches at key developmental stages. Hnf1b early deletion leads to a reduced pool of pancreatic multipotent progenitor cells (MPCs) due to decreased proliferation and increased apoptosis. Lack of Hnf1b either during the first or the secondary transitions is associated with cystic ducts. Ductal cells exhibit aberrant polarity and decreased expression of several cystic disease genes, some of which we identified as novel Hnf1b targets. Notably, we show that Glis3, a transcription factor involved in duct morphogenesis and endocrine cell development, is downstream Hnf1b. In addition, a loss and abnormal differentiation of acinar cells are observed. Strikingly, inactivation of Hnf1b at different time points results in the absence of Ngn3+ endocrine precursors throughout embryogenesis. We further show that Hnf1b occupies novel Ngn3 putative regulatory sequences in vivo. Thus, Hnf1b plays a crucial role in the regulatory networks that control pancreatic MPC expansion, acinar cell identity, duct morphogenesis and generation of endocrine precursors. Our results uncover an unappreciated requirement of Hnf1b in endocrine cell specification and suggest a mechanistic explanation of diabetes onset in individuals with MODY5. Summary: Mice with conditional depletion of the transcription factor Hnf1b, whose mutation is associated with maturity-onset diabetes of the young in humans, show multiple defects in pancreas development.


Journal of Biological Chemistry | 2003

Functions of HNF1 family members in differentiation of the visceral endoderm cell lineage

Cécile Haumaitre; Michael Reber; Silvia Cereghini

The two members of the hepatocyte nuclear factor 1 (HNF1) transcription factor family, HNF1 and variant HNF1 (vHNF1), show a strong homology in their atypical POU-homeodomain and dimerization domain but differ in their transactivation domains. Moreover, two vHNF1 isoforms generated by alternative splicing are present in all tissues expressing this gene. vHnf1-deficient mouse embryos die soon after implantation due to defective visceral endoderm formation, an extraembryonic tissue essential for development and survival of the embryo proper. In contrast, invalidation of Hnf1, which is expressed at later developmental stages than vHnf1, does not lead to embryonic lethality or developmental defects. To examine the specific or potential equivalent functions of vHNF1 isoforms and HNF1 during the process of visceral endoderm differentiation, we stably reexpressed these factors in vHnf1-deficient embryonic stem cells. Analysis of these embryonic stem cells upon differentiation into embryoid bodies shows that vHNF1 isoforms exhibit specific behaviors depending on particular target genes and cooperate in the establishment of a functional visceral endoderm. Furthermore, forced expression of HNF1 in vHnf1-deficient embryonic stem cells fully restores the formation of a mature visceral endoderm with the correct expression profile of early and late markers of this lineage. Thus, in this context, HNF1 functionally replaces both vHNF1 isoforms, suggesting that the different developmental functions of these transcription factors are mainly due to the acquisition of novel expression patterns.


Cell Cycle | 2009

Directing cell differentiation with small-molecule histone deacetylase inhibitors: The example of promoting pancreatic endocrine cells

Cécile Haumaitre; Olivia Lenoir; Raphael Scharfmann

Genes in the mammalian genome contain information necessary to build an organism during development. Epigenetic processes add a further degree of complexity. These mechanisms of temporal and spatial control of gene activity during the development of complex organisms modulate gene expression patterns without modifying the DNA sequence. Post-translational modifications of histones such as acetylation bestow the ability to modify genomic signals. Determining whether epigenetic changes are responsible for particular phenotypes is thus crucial to understand organ development. Here we review the role of histone deacetylase enzymes (HDACs) in guiding lineage commitment and driving cell differentiation, as well as their pharmacological manipulation using small-molecule HDAC inhibitors in various differentiation programs. In particular, we focus on the pancreas as we recently discovered that deacetylase inhibition favors generation of endocrine pancreatic cells. We also discuss the potential application of HDAC inhibitors for disease treatment, with particular emphasis on diabetes therapy.


Metabolomics | 2016

Tissue sample stability: thawing effect on multi-organ samples

Frida Torell; Kate Bennett; Silvia Cereghini; Stefan Rännar; Katrin Lundstedt-Enkel; Thomas Moritz; Cécile Haumaitre; Johan Trygg; Torbjörn Lundstedt

Correct handling of samples is essential in metabolomic studies. Improper handling and prolonged storage of samples has unwanted effects on the metabolite levels. The aim of this study was to identify the effects that thawing has on different organ samples. Organ samples from gut, kidney, liver, muscle and pancreas were analyzed for a number of endogenous metabolites in an untargeted metabolomics approach, using gas chromatography time of flight mass spectrometry at the Swedish Metabolomics Centre, Umeå University, Sweden. Multivariate data analysis was performed by means of principal component analysis and orthogonal projection to latent structures discriminant analysis. The results showed that the metabolic changes caused by thawing were almost identical for all organs. As expected, there was a marked increase in overall metabolite levels after thawing, caused by increased protein and cell degradation. Cholesterol was one of the eight metabolites found to be decreased in the thawed samples in all organ groups. The results also indicated that the muscles are less susceptible to oxidation compared to the rest of the organ samples.


Best Practice & Research Clinical Endocrinology & Metabolism | 2015

Implication of epigenetics in pancreas development and disease

Evans Quilichini; Cécile Haumaitre

Pancreas development is controlled by a complex interaction of signaling pathways and transcription factor networks that determine pancreatic specification and differentiation of exocrine and endocrine cells. Epigenetics adds a new layer of gene regulation. DNA methylation, histone modifications and non-coding RNAs recently appeared as important epigenetic factors regulating pancreas development. In this review, we report recent findings obtained by analyses in model organisms as well as genome-wide approaches that demonstrate the role of these epigenetic regulators in the control of exocrine and endocrine cell differentiation, identity, function, proliferation and regeneration. We also highlight how altered epigenetic processes contribute to pancreatic disorders: diabetes and pancreatic cancer. Uncovering these epigenetic events can help to better understand these diseases, provide novel therapeutical targets for their treatment, and improve cell-based therapies for diabetes.


PLOS ONE | 2015

Multi-Organ Contribution to the Metabolic Plasma Profile Using Hierarchical Modelling

Frida Torell; Kate Bennett; Silvia Cereghini; Stefan Rännar; Katrin Lundstedt-Enkel; Thomas Moritz; Cécile Haumaitre; Johan Trygg; Torbjörn Lundstedt

Hierarchical modelling was applied in order to identify the organs that contribute to the levels of metabolites in plasma. Plasma and organ samples from gut, kidney, liver, muscle and pancreas were obtained from mice. The samples were analysed using gas chromatography time-of-flight mass spectrometry (GC TOF-MS) at the Swedish Metabolomics centre, Umeå University, Sweden. The multivariate analysis was performed by means of principal component analysis (PCA) and orthogonal projections to latent structures (OPLS). The main goal of this study was to investigate how each organ contributes to the metabolic plasma profile. This was performed using hierarchical modelling. Each organ was found to have a unique metabolic profile. The hierarchical modelling showed that the gut, kidney and liver demonstrated the greatest contribution to the metabolic pattern of plasma. For example, we found that metabolites were absorbed in the gut and transported to the plasma. The kidneys excrete branched chain amino acids (BCAAs) and fatty acids are transported in the plasma to the muscles and liver. Lactic acid was also found to be transported from the pancreas to plasma. The results indicated that hierarchical modelling can be utilized to identify the organ contribution of unknown metabolites to the metabolic profile of plasma.

Collaboration


Dive into the Cécile Haumaitre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge