Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cécile Hervé is active.

Publication


Featured researches published by Cécile Hervé.


Annual Review of Plant Biology | 2011

Evolution and Diversity of Plant Cell Walls: From Algae to Flowering Plants

Zoë A. Popper; Dagmar B. Stengel; David S. Domozych; Bernard Kloareg; Maria G. Tuohy; William G. T. Willats; Michel Gurvan; Cécile Hervé

All photosynthetic multicellular Eukaryotes, including land plants and algae, have cells that are surrounded by a dynamic, complex, carbohydrate-rich cell wall. The cell wall exerts considerable biological and biomechanical control over individual cells and organisms, thus playing a key role in their environmental interactions. This has resulted in compositional variation that is dependent on developmental stage, cell type, and season. Further variation is evident that has a phylogenetic basis. Plants and algae have a complex phylogenetic history, including acquisition of genes responsible for carbohydrate synthesis and modification through a series of primary (leading to red algae, green algae, and land plants) and secondary (generating brown algae, diatoms, and dinoflagellates) endosymbiotic events. Therefore, organisms that have the shared features of photosynthesis and possession of a cell wall do not form a monophyletic group. Yet they contain some common wall components that can be explained increasingly by genetic and biochemical evidence.


BMC Plant Biology | 2008

Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls.

Susan E. Marcus; Yves Verhertbruggen; Cécile Hervé; José J. Ordaz-Ortiz; Vladimír Farkaš; Henriette L. Pedersen; William G. T. Willats; J. Paul Knox

BackgroundMolecular probes are required to detect cell wall polymers in-situ to aid understanding of their cell biology and several studies have shown that cell wall epitopes have restricted occurrences across sections of plant organs indicating that cell wall structure is highly developmentally regulated. Xyloglucan is the major hemicellulose or cross-linking glycan of the primary cell walls of dicotyledons although little is known of its occurrence or functions in relation to cell development and cell wall microstructure.ResultsUsing a neoglycoprotein approach, in which a XXXG heptasaccharide of tamarind seed xyloglucan was coupled to BSA to produce an immunogen, we have generated a rat monoclonal antibody (designated LM15) to the XXXG structural motif of xyloglucans. The specificity of LM15 has been confirmed by the analysis of LM15 binding using glycan microarrays and oligosaccharide hapten inhibition of binding studies. The use of LM15 for the analysis of xyloglucan in the cell walls of tamarind and nasturtium seeds, in which xyloglucan occurs as a storage polysaccharide, indicated that the LM15 xyloglucan epitope occurs throughout the thickened cell walls of the tamarind seed and in the outer regions, adjacent to middle lamellae, of the thickened cell walls of the nasturtium seed. Immunofluorescence analysis of LM15 binding to sections of tobacco and pea stem internodes indicated that the xyloglucan epitope was restricted to a few cell types in these organs. Enzymatic removal of pectic homogalacturonan from equivalent sections resulted in the abundant detection of distinct patterns of the LM15 xyloglucan epitope across these organs and a diversity of occurrences in relation to the cell wall microstructure of a range of cell types.ConclusionThese observations support ideas that xyloglucan is associated with pectin in plant cell walls. They also indicate that documented patterns of cell wall epitopes in relation to cell development and cell differentiation may need to be re-considered in relation to the potential masking of cell wall epitopes by other cell wall components.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida

Jonas Collén; Betina M. Porcel; Wilfrid Carré; Steven G. Ball; Cristian Chaparro; Thierry Tonon; Tristan Barbeyron; Gurvan Michel; Benjamin Noel; Klaus Valentin; Marek Eliáš; François Artiguenave; Alok Arun; Jean-Marc Aury; Jose Fernandes Barbosa-Neto; John H. Bothwell; François-Yves Bouget; Loraine Brillet; Francisco Cabello-Hurtado; Salvador Capella-Gutiérrez; Bénédicte Charrier; Lionel Cladière; J. Mark Cock; Susana M. Coelho; Christophe Colleoni; Mirjam Czjzek; Corinne Da Silva; Ludovic Delage; Philippe Deschamps; Simon M. Dittami

Red seaweeds are key components of coastal ecosystems and are economically important as food and as a source of gelling agents, but their genes and genomes have received little attention. Here we report the sequencing of the 105-Mbp genome of the florideophyte Chondrus crispus (Irish moss) and the annotation of the 9,606 genes. The genome features an unusual structure characterized by gene-dense regions surrounded by repeat-rich regions dominated by transposable elements. Despite its fairly large size, this genome shows features typical of compact genomes, e.g., on average only 0.3 introns per gene, short introns, low median distance between genes, small gene families, and no indication of large-scale genome duplication. The genome also gives insights into the metabolism of marine red algae and adaptations to the marine environment, including genes related to halogen metabolism, oxylipins, and multicellularity (microRNA processing and transcription factors). Particularly interesting are features related to carbohydrate metabolism, which include a minimalistic gene set for starch biosynthesis, the presence of cellulose synthases acquired before the primary endosymbiosis showing the polyphyly of cellulose synthesis in Archaeplastida, and cellulases absent in terrestrial plants as well as the occurrence of a mannosylglycerate synthase potentially originating from a marine bacterium. To explain the observations on genome structure and gene content, we propose an evolutionary scenario involving an ancestral red alga that was driven by early ecological forces to lose genes, introns, and intergenetic DNA; this loss was followed by an expansion of genome size as a consequence of activity of transposable elements.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects

Cécile Hervé; Artur Rogowski; Anthony W. Blake; Susan E. Marcus; Harry J. Gilbert; J. Paul Knox

Cell wall degrading enzymes have a complex molecular architecture consisting of catalytic modules and noncatalytic carbohydrate-binding modules (CBMs). The function of CBMs in cell wall degrading processes is poorly understood. Here, we have evaluated the potential enzyme-targeting function of CBMs in the context of intact primary and secondary cell wall deconstruction. The capacity of a pectate lyase to degrade pectic homogalacturonan in primary cell walls was potentiated by cellulose-directed CBMs but not by xylan-directed CBMs. Conversely, the arabinofuranosidase-mediated removal of side chains from arabinoxylan in xylan-rich and cellulose-poor wheat grain endosperm cell walls was enhanced by a xylan-binding CBM but less so by a crystalline cellulose-specific module. The capacity of xylanases to degrade xylan in secondary cell walls was potentiated by both xylan- and cellulose-directed CBMs. These studies demonstrate that CBMs can potentiate the action of a cognate catalytic module toward polysaccharides in intact cell walls through the recognition of nonsubstrate polysaccharides. The targeting actions of CBMs therefore have strong proximity effects within cell wall structures, explaining why cellulose-directed CBMs are appended to many noncellulase cell wall hydrolases.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function

Cedric Montanier; Alicia Lammerts van Bueren; Claire Dumon; James E. Flint; Márcia A. S. Correia; José A. M. Prates; Susan J. Firbank; Richard J. Lewis; Gilles Grondin; Mariana Gabriela Ghinet; Tracey M. Gloster; Cécile Hervé; J. Paul Knox; Brian G. Talbot; Johan P. Turkenburg; Janne Kerovuo; Ryszard Brzezinski; Carlos M. G. A. Fontes; Gideon J. Davies; Alisdair B. Boraston; Harry J. Gilbert

Enzymes that hydrolyze complex carbohydrates play important roles in numerous biological processes that result in the maintenance of marine and terrestrial life. These enzymes often contain noncatalytic carbohydrate binding modules (CBMs) that have important substrate-targeting functions. In general, there is a tight correlation between the ligands recognized by bacterial CBMs and the substrate specificity of the appended catalytic modules. Through high-resolution structural studies, we demonstrate that the architecture of the ligand binding sites of 4 distinct family 35 CBMs (CBM35s), appended to 3 plant cell wall hydrolases and the exo-β-d-glucosaminidase CsxA, which contributes to the detoxification and metabolism of an antibacterial fungal polysaccharide, is highly conserved and imparts specificity for glucuronic acid and/or Δ4,5-anhydrogalaturonic acid (Δ4,5-GalA). Δ4,5-GalA is released from pectin by the action of pectate lyases and as such acts as a signature molecule for plant cell wall degradation. Thus, the CBM35s appended to the 3 plant cell wall hydrolases, rather than targeting the substrates of the cognate catalytic modules, direct their appended enzymes to regions of the plant that are being actively degraded. Significantly, the CBM35 component of CsxA anchors the enzyme to the bacterial cell wall via its capacity to bind uronic acid sugars. This latter observation reveals an unusual mechanism for bacterial cell wall enzyme attachment. This report shows that the biological role of CBM35s is not dictated solely by their carbohydrate specificities but also by the context of their target ligands.


Annals of Botany | 2014

Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae.

Estelle Deniaud-Bouët; Nelly Kervarec; Gurvan Michel; Thierry Tonon; Bernard Kloareg; Cécile Hervé

BACKGROUND AND AIMS Brown algae are photosynthetic multicellular marine organisms evolutionarily distant from land plants, with a distinctive cell wall. They feature carbohydrates shared with plants (cellulose), animals (fucose-containing sulfated polysaccharides, FCSPs) or bacteria (alginates). How these components are organized into a three-dimensional extracellular matrix (ECM) still remains unclear. Recent molecular analysis of the corresponding biosynthetic routes points toward a complex evolutionary history that shaped the ECM structure in brown algae. METHODS Exhaustive sequential extractions and composition analyses of cell wall material from various brown algae of the order Fucales were performed. Dedicated enzymatic degradations were used to release and identify cell wall partners. This approach was complemented by systematic chromatographic analysis to study polymer interlinks further. An additional structural assessment of the sulfated fucan extracted from Himanthalia elongata was made. KEY RESULTS The data indicate that FCSPs are tightly associated with proteins and cellulose within the walls. Alginates are associated with most phenolic compounds. The sulfated fucans from H. elongata were shown to have a regular α-(1→3) backbone structure, while an alternating α-(1→3), (1→4) structure has been described in some brown algae from the order Fucales. CONCLUSIONS The data provide a global snapshot of the cell wall architecture in brown algae, and contribute to the understanding of the structure-function relationships of the main cell wall components. Enzymatic cross-linking of alginates by phenols may regulate the strengthening of the wall, and sulfated polysaccharides may play a key role in the adaptation to osmotic stress. The emergence and evolution of ECM components is further discussed in relation to the evolution of multicellularity in brown algae.


Plant Journal | 2009

Enzymatic treatments reveal differential capacities for xylan recognition and degradation in primary and secondary plant cell walls

Cécile Hervé; Artur Rogowski; Harry J. Gilbert; J. Paul Knox

The capacity of four xylan-directed probes (carbohydrate-binding modules CfCBM2b-1-2 and CjCBM15; monoclonal antibodies LM10 and LM11) to recognize xylan polysaccharides in primary and secondary cell walls of tobacco stem sections has been determined. Enzymatic removal of pectic homogalacturonan revealed differential recognition of xylans in restricted regions of cortical primary cell walls. Monoclonal antibody binding to these exposed xylans was more sensitive to xylanase action than carbohydrate-binding module (CBM) binding. In contrast, the recognition of xylans by CBMs in secondary cell walls of the same organ was more sensitive to xylanase action than the recognition of xylans by the monoclonal antibodies. A methodology was developed to quantify indirect immunofluorescence intensities, and to evaluate xylanase impacts. The four xylan probes were also used to detect xylan populations in chromatographic separations of solubilized cell wall materials from tobacco stems. Altogether, these observations reveal the heterogeneity of the xylans in plant cell walls. They indicate that although CBM and antibody probes can exhibit similar specificities against solubilized polymers, they can have differential capacities for xylan recognition in muro, and that the access of molecular probes and enzymes to xylan epitopes/ligands also varies between primary and secondary cell walls that are present in the same organ.


Current Genetics | 2006

NADPH oxidases in Eukaryotes: red algae provide new hints!

Cécile Hervé; Thierry Tonon; Jonas Collén; Erwan Corre; Catherine Boyen

The red macro-alga Chondrus crispus is known to produce superoxide radicals in response to cell-free extracts of its green algal pathogenic endophyte Acrochaete operculata. So far, no enzymes involved in this metabolism have been isolated from red algae. We report here the isolation of a gene encoding a homologue of the respiratory burst oxidase gp91phox in C. crispus, named Ccrboh. This single copy gene encodes a polypeptide of 825 amino acids. Search performed in available genome and EST algal databases identified sequences showing common features of NADPH oxidases in other algae such as the red unicellular Cyanidioschyzon merolae, the economically valuable red macro-alga Porphyra yezoensis and the two diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. Domain organization and phylogenetic relationships with plant, animal, fungal and algal NADPH oxidase homologues were analyzed. Transcription analysis of the C. crispus gene revealed that it was over-transcribed during infection of C. crispus gametophyte by the endophyte A. operculata, and after incubation in presence of atrazine, methyl jasmonate and hydroxyperoxides derived from C20 polyunsaturated fatty acids (PUFAs). These results also illustrate the interest of exploring the red algal lineage for gaining insight into the deep evolution of NADPH oxidases in Eukaryotes.


Methods of Molecular Biology | 2011

Monoclonal Antibodies, Carbohydrate-Binding Modules, and the Detection of Polysaccharides in Plant Cell Walls

Cécile Hervé; Susan E. Marcus; J. Paul Knox

Plant cell walls are diverse composites of complex polysaccharides. Molecular probes such as monoclonal antibodies (MABs) and carbohydrate-binding modules (CBMs) are important tools to detect and dissect cell wall structures in plant materials. We provide an account of methods that can be used to detect cell wall polysaccharide structures (epitopes) in plant materials and also describe treatments that can provide information on the masking of sets of polysaccharides that may prevent detection. These masking -phenomena may indicate potential interactions between sets of cell wall polysaccharides, and methods to uncover them are an important aspect of cell wall immunocytochemistry.


New Phytologist | 2016

Arabinogalactan proteins have deep roots in eukaryotes: identification of genes and epitopes in brown algae and their role in Fucus serratus embryo development

Cécile Hervé; Amandine Siméon; Murielle Jam; Andrew Cassin; Kim L. Johnson; Armando A. Salmeán; William G. T. Willats; Monika S. Doblin; Anthony Bacic; Bernard Kloareg

Arabinogalactan proteins (AGPs) are highly glycosylated, hydroxyproline-rich proteins found at the cell surface of plants, where they play key roles in developmental processes. Brown algae are marine, multicellular, photosynthetic eukaryotes. They belong to the phylum Stramenopiles, which is unrelated to land plants and green algae (Chloroplastida). Brown algae share common evolutionary features with other multicellular organisms, including a carbohydrate-rich cell wall. They differ markedly from plants in their cell wall composition, and AGPs have not been reported in brown algae. Here we investigated the presence of chimeric AGP-like core proteins in this lineage. We report that the genome sequence of the brown algal model Ectocarpus siliculosus encodes AGP protein backbone motifs, in a gene context that differs considerably from what is known in land plants. We showed the occurrence of AGP glycan epitopes in a range of brown algal cell wall extracts. We demonstrated that these chimeric AGP-like core proteins are developmentally regulated in embryos of the order Fucales and showed that AGP loss of function seriously impairs the course of early embryogenesis. Our findings shine a new light on the role of AGPs in cell wall sensing and raise questions about the origin and evolution of AGPs in eukaryotes.

Collaboration


Dive into the Cécile Hervé's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonas Collén

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge