Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cecile L. Maire is active.

Publication


Featured researches published by Cecile L. Maire.


Cancer Discovery | 2014

EGFR variant heterogeneity in glioblastoma resolved through single-nucleus sequencing

Joshua M. Francis; Cheng-Zhong Zhang; Cecile L. Maire; Joonil Jung; Veronica E. Manzo; Viktor A. Adalsteinsson; Heather Homer; Samer Haidar; Brendan Blumenstiel; Chandra Sekhar Pedamallu; Azra H. Ligon; John C Love; Matthew Meyerson; Keith L. Ligon

UNLABELLED Glioblastomas (GBM) with EGFR amplification represent approximately 50% of newly diagnosed cases, and recent studies have revealed frequent coexistence of multiple EGFR aberrations within the same tumor, which has implications for mutation cooperation and treatment resistance. However, bulk tumor sequencing studies cannot resolve the patterns of how the multiple EGFR aberrations coexist with other mutations within single tumor cells. Here, we applied a population-based single-cell whole-genome sequencing methodology to characterize genomic heterogeneity in EGFR-amplified glioblastomas. Our analysis effectively identified clonal events, including a novel translocation of a super enhancer to the TERT promoter, as well as subclonal LOH and multiple EGFR mutational variants within tumors. Correlating the EGFR mutations onto the cellular hierarchy revealed that EGFR truncation variants (EGFRvII and EGFR carboxyl-terminal deletions) identified in the bulk tumor segregate into nonoverlapping subclonal populations. In vitro and in vivo functional studies show that EGFRvII is oncogenic and sensitive to EGFR inhibitors currently in clinical trials. Thus, the association between diverse activating mutations in EGFR and other subclonal mutations within a single tumor supports an intrinsic mechanism for proliferative and clonal diversification with broad implications in resistance to treatment. SIGNIFICANCE We developed a novel single-cell sequencing methodology capable of identifying unique, nonoverlapping subclonal alterations from archived frozen clinical specimens. Using GBM as an example, we validated our method to successfully define tumor cell subpopulations containing distinct genetic and treatment resistance profiles and potentially mutually cooperative combinations of alterations in EGFR and other genes.


Nature Genetics | 2013

DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape

Mingchao Xie; Chibo Hong; Bo Zhang; Rebecca F. Lowdon; Xiaoyun Xing; Daofeng Li; Xin Zhou; Hyung Joo Lee; Cecile L. Maire; Keith L. Ligon; Philippe Gascard; Mahvash Sigaroudinia; Thea D. Tlsty; Theresa A. Kadlecek; Arthur Weiss; Henriette O'Geen; Peggy J. Farnham; Pamela A. F. Madden; Andrew J. Mungall; Angela Tam; Baljit Kamoh; Stephanie Cho; Richard A. Moore; Martin Hirst; Marco A. Marra; Joseph F. Costello; Ting Wang

Transposable element (TE)-derived sequences comprise half of the human genome and DNA methylome and are presumed to be densely methylated and inactive. Examination of genome-wide DNA methylation status within 928 TE subfamilies in human embryonic and adult tissues identified unexpected tissue-specific and subfamily-specific hypomethylation signatures. Genes proximal to tissue-specific hypomethylated TE sequences were enriched for functions important for the relevant tissue type, and their expression correlated strongly with hypomethylation within the TEs. When hypomethylated, these TE sequences gained tissue-specific enhancer marks, including monomethylation of histone H3 at lysine 4 (H3K4me1) and occupancy by p300, and a majority exhibited enhancer activity in reporter gene assays. Many such TEs also harbored binding sites for transcription factors that are important for tissue-specific functions and showed evidence of evolutionary selection. These data suggest that sequences derived from TEs may be responsible for wiring tissue type–specific regulatory networks and may have acquired tissue-specific epigenetic regulation.


Cancer Cell | 2011

The central nervous system restricted transcription factor Olig2 opposes p53 responses to genotoxic damage in neural progenitors and malignant glioma

Shwetal Mehta; Emmanuelle Huillard; Santosh Kesari; Cecile L. Maire; Diane Golebiowski; Emily P. Harrington; John A. Alberta; Michael F. Kane; Matthew Theisen; Keith L. Ligon; David H. Rowitch; Charles D. Stiles

High-grade gliomas are notoriously insensitive to radiation and genotoxic drugs. Paradoxically, the p53 gene is structurally intact in the majority of these tumors. Resistance to genotoxic modalities in p53-positive gliomas is generally attributed to attenuation of p53 functions by mutations of other components within the p53 signaling axis, such as p14(Arf), MDM2, and ATM, but this explanation is not entirely satisfactory. We show here that the central nervous system (CNS)-restricted transcription factor Olig2 affects a key posttranslational modification of p53 in both normal and malignant neural progenitors and thereby antagonizes the interaction of p53 with promoter elements of multiple target genes. In the absence of Olig2 function, even attenuated levels of p53 are adequate for biological responses to genotoxic damage.


Genome Research | 2013

Functional DNA methylation differences between tissues, cell types, and across individuals discovered using the M&M algorithm

Bo Zhang; Zhou Y; Nan Lin; Rebecca F. Lowdon; Chibo Hong; Raman P. Nagarajan; Jeffrey B. Cheng; Daofeng Li; Michael Stevens; Hyung Joo Lee; Xiaoyun Xing; Jia Zhou; Sundaram; Glendoria Elliott; Junchen Gu; Shi T; Philippe Gascard; Mahvash Sigaroudinia; Thea D. Tlsty; Theresa A. Kadlecek; Arthur Weiss; Henriette O'Geen; Peggy J. Farnham; Cecile L. Maire; Keith L. Ligon; Pamela A. F. Madden; Angela Tam; Richard A. Moore; Martin Hirst; Marco A. Marra

DNA methylation plays key roles in diverse biological processes such as X chromosome inactivation, transposable element repression, genomic imprinting, and tissue-specific gene expression. Sequencing-based DNA methylation profiling provides an unprecedented opportunity to map and compare complete DNA methylomes. This includes one of the most widely applied technologies for measuring DNA methylation: methylated DNA immunoprecipitation followed by sequencing (MeDIP-seq), coupled with a complementary method, methylation-sensitive restriction enzyme sequencing (MRE-seq). A computational approach that integrates data from these two different but complementary assays and predicts methylation differences between samples has been unavailable. Here, we present a novel integrative statistical framework M&M (for integration of MeDIP-seq and MRE-seq) that dynamically scales, normalizes, and combines MeDIP-seq and MRE-seq data to detect differentially methylated regions. Using sample-matched whole-genome bisulfite sequencing (WGBS) as a gold standard, we demonstrate superior accuracy and reproducibility of M&M compared to existing analytical methods for MeDIP-seq data alone. M&M leverages the complementary nature of MeDIP-seq and MRE-seq data to allow rapid comparative analysis between whole methylomes at a fraction of the cost of WGBS. Comprehensive analysis of nineteen human DNA methylomes with M&M reveals distinct DNA methylation patterns among different tissue types, cell types, and individuals, potentially underscoring divergent epigenetic regulation at different scales of phenotypic diversity. We find that differential DNA methylation at enhancer elements, with concurrent changes in histone modifications and transcription factor binding, is common at the cell, tissue, and individual levels, whereas promoter methylation is more prominent in reinforcing fundamental tissue identities.


Genome Research | 2013

Estimating absolute methylation levels at single-CpG resolution from methylation enrichment and restriction enzyme sequencing methods

Michael Stevens; Jeffrey B. Cheng; Daofeng Li; Mingchao Xie; Chibo Hong; Cecile L. Maire; Keith L. Ligon; Martin Hirst; Marco A. Marra; Joseph F. Costello; Ting Wang

Recent advancements in sequencing-based DNA methylation profiling methods provide an unprecedented opportunity to map complete DNA methylomes. These include whole-genome bisulfite sequencing (WGBS, MethylC-seq, or BS-seq), reduced-representation bisulfite sequencing (RRBS), and enrichment-based methods such as MeDIP-seq, MBD-seq, and MRE-seq. These methods yield largely comparable results but differ significantly in extent of genomic CpG coverage, resolution, quantitative accuracy, and cost, at least while using current algorithms to interrogate the data. None of these existing methods provides single-CpG resolution, comprehensive genome-wide coverage, and cost feasibility for a typical laboratory. We introduce methylCRF, a novel conditional random fields-based algorithm that integrates methylated DNA immunoprecipitation (MeDIP-seq) and methylation-sensitive restriction enzyme (MRE-seq) sequencing data to predict DNA methylation levels at single-CpG resolution. Our method is a combined computational and experimental strategy to produce DNA methylomes of all 28 million CpGs in the human genome for a fraction (<10%) of the cost of whole-genome bisulfite sequencing methods. methylCRF was benchmarked for accuracy against Infinium arrays, RRBS, WGBS sequencing, and locus-specific bisulfite sequencing performed on the same human embryonic stem cell line. methylCRF transformation of MeDIP-seq/MRE-seq was equivalent to a biological replicate of WGBS in quantification, coverage, and resolution. We used conventional bisulfite conversion, PCR, cloning, and sequencing to validate loci where our predictions do not agree with whole-genome bisulfite data, and in 11 out of 12 cases, methylCRF predictions of methylation level agree better with validated results than does whole-genome bisulfite sequencing. Therefore, methylCRF transformation of MeDIP-seq/MRE-seq data provides an accurate, inexpensive, and widely accessible strategy to create full DNA methylomes.


Nature Communications | 2015

Intermediate DNA methylation is a conserved signature of genome regulation

Ginell Elliott; Chibo Hong; Xiaoyun Xing; Xin Zhou; Daofeng Li; Cristian Coarfa; Robert J.A. Bell; Cecile L. Maire; Keith L. Ligon; Mahvash Sigaroudinia; Philippe Gascard; Thea D. Tlsty; R. Alan Harris; Leonard C. Schalkwyk; Misha Bilenky; Jonathan Mill; Peggy J. Farnham; Manolis Kellis; Marco A. Marra; Aleksandar Milosavljevic; Martin Hirst; Gary D. Stormo; Ting Wang; Joseph F. Costello

The role of intermediate methylation states in DNA is unclear. Here, to comprehensively identify regions of intermediate methylation and their quantitative relationship with gene activity, we apply integrative and comparative epigenomics to 25 human primary cell and tissue samples. We report 18,452 intermediate methylation regions located near 36% of genes and enriched at enhancers, exons and DNase I hypersensitivity sites. Intermediate methylation regions average 57% methylation, are predominantly allele-independent and are conserved across individuals and between mouse and human, suggesting a conserved function. These regions have an intermediate level of active chromatin marks and their associated genes have intermediate transcriptional activity. Exonic intermediate methylation correlates with exon inclusion at a level between that of fully methylated and unmethylated exons, highlighting gene context-dependent functions. We conclude that intermediate DNA methylation is a conserved signature of gene regulation and exon usage.


Nature Communications | 2017

High grade serous ovarian carcinomas originate in the fallopian tube

S. Intidhar Labidi-Galy; Eniko Papp; Dorothy Hallberg; Noushin Niknafs; Vilmos Adleff; Michaël Noë; Rohit Bhattacharya; Marian Novak; Siân Jones; Jillian Phallen; Carolyn Hruban; Michelle S. Hirsch; Douglas I. Lin; Lauren Schwartz; Cecile L. Maire; Jean-Christophe Tille; Michaela Bowden; A. Ayhan; Laura D. Wood; Robert B. Scharpf; Robert J. Kurman; Tian Li Wang; Ie Ming Shih; Rachel Karchin; Ronny Drapkin; Victor E. Velculescu

High-grade serous ovarian carcinoma (HGSOC) is the most frequent type of ovarian cancer and has a poor outcome. It has been proposed that fallopian tube cancers may be precursors of HGSOC but evolutionary evidence for this hypothesis has been limited. Here, we perform whole-exome sequence and copy number analyses of laser capture microdissected fallopian tube lesions (p53 signatures, serous tubal intraepithelial carcinomas (STICs), and fallopian tube carcinomas), ovarian cancers, and metastases from nine patients. The majority of tumor-specific alterations in ovarian cancers were present in STICs, including those affecting TP53, BRCA1, BRCA2 or PTEN. Evolutionary analyses reveal that p53 signatures and STICs are precursors of ovarian carcinoma and identify a window of 7 years between development of a STIC and initiation of ovarian carcinoma, with metastases following rapidly thereafter. Our results provide insights into the etiology of ovarian cancer and have implications for prevention, early detection and therapeutic intervention of this disease.It has previously been proposed that high-grade serous ovarian carcinoma (HGSOC) may originate from the fallopian tube. Here, the authors analyze genetic aberrances in fallopian tube lesions, ovarian cancers, and metastases from HGSOC patients and establish the evolutionary origins of HGSOC in the fallopian tube.


PLOS ONE | 2009

CRX Is a Diagnostic Marker of Retinal and Pineal Lineage Tumors

Sandro Santagata; Cecile L. Maire; Ahmed Idbaih; Lars Geffers; Mick Correll; Kristina Holton; John Quackenbush; Keith L. Ligon

Background CRX is a homeobox transcription factor whose expression and function is critical to maintain retinal and pineal lineage cells and their progenitors. To determine the biologic and diagnostic potential of CRX in human tumors of the retina and pineal, we examined its expression in multiple settings. Methodology/Principal Findings Using situ hybridization and immunohistochemistry we show that Crx RNA and protein expression are exquisitely lineage restricted to retinal and pineal cells during normal mouse and human development. Gene expression profiling analysis of a wide range of human cancers and cancer cell lines also supports that CRX RNA is highly lineage restricted in cancer. Immunohistochemical analysis of 22 retinoblastomas and 13 pineal parenchymal tumors demonstrated strong expression of CRX in over 95% of these tumors. Importantly, CRX was not detected in the majority of tumors considered in the differential diagnosis of pineal region tumors (n = 78). The notable exception was medulloblastoma, 40% of which exhibited CRX expression in a heterogeneous pattern readily distinguished from that seen in retino-pineal tumors. Conclusions/Significance These findings describe new potential roles for CRX in human cancers and highlight the general utility of lineage restricted transcription factors in cancer biology. They also identify CRX as a sensitive and specific clinical marker and a potential lineage dependent therapeutic target in retinoblastoma and pineoblastoma.


Neuro-oncology | 2014

Molecular pathologic diagnosis of epidermal growth factor receptor

Cecile L. Maire; Keith L. Ligon

Epidermal growth factor receptor (EGFR) was one of the first oncogenes identified in glioblastoma (GBM) and remains one of the most attractive therapeutic targets. Genomic alterations in EGFR are present in 57% of patients and are strikingly diverse, including gene amplification, rearrangements, and point mutations. Each aberration class has important clinical implications for diagnosis, prognosis, or therapeutic investigation of EGFR in clinical trials. Somatic copy number alterations (SCNAs) are the most common abnormalities in EGFR, with gene amplification present in >43% of patients. The presence of EGFR amplification is often used now to support the diagnosis of GBM and discriminate GBM from other gliomas. It is currently detected in clinical labs using fluorescence in situ hybridization, colorimetric in situ hybridization or, more recently multiplex genomic technologies such as array CGH or targeted next-generation sequencing approaches. Rearrangements of EGFR are most commonly internal deletions leading to activation of the receptor including EGFRvIII and, less commonly, EGFRvII and other variants, which are collectively seen in 25% of GBM patients. EGFRvIII is readily detected via mutation-specific antibodies, but heterogeneity of this and other deletion variants has hindered reliable detection of these aberrations using genomic DNA-based methods. RNA expression profiling (Nanostring and anchored multiplex PCR) has additional potential as a rapid and reliable strategy for detecting EGFR rearrangements with high sensitivity. Single nucleotide variants in EGFR are relatively rare and diverse but are efficiently detected using the targeted or exome-sequencing assays that are now entering clinical pathology practice. The advent of multiplex technologies has revealed the fact that multiple aberrations of EGFR are present in at least 30% of patients with EGFR disruption, a fact recently highlighted by more quantitative sequencing techniques and single cell analysis of GBM. Diagnostic assays used to evaluate EGFR and other receptor tyrosine kinases will therefore be increasingly used to measure and resolve this heterogeneity in order to better understand their mechanisms of resistance. In summary, the diagnostic approaches for identifying clinically relevant EGFR aberrations have rapidly advanced and are providing insights into more effective inhibition of this familiar oncogene in GBM and other cancers.


Nature Biotechnology | 2016

Drug sensitivity of single cancer cells is predicted by changes in mass accumulation rate

Mark M. Stevens; Cecile L. Maire; Nigel Chou; Mark A. Murakami; David S. Knoff; Yuki Kikuchi; Robert J. Kimmerling; Huiyun Liu; Samer Haidar; Nicholas L Calistri; Nathan Cermak; Selim Olcum; Nicolas Cordero; Ahmed Idbaih; Patrick Y. Wen; David M. Weinstock; Keith L. Ligon; Scott R. Manalis

Assays that can determine the response of tumor cells to cancer therapeutics could greatly aid the selection of drug regimens for individual patients. However, the utility of current functional assays is limited, and predictive genetic biomarkers are available for only a small fraction of cancer therapies. We found that the single-cell mass accumulation rate (MAR), profiled over many hours with a suspended microchannel resonator, accurately defined the drug sensitivity or resistance of glioblastoma and B-cell acute lymphocytic leukemia cells. MAR revealed heterogeneity in drug sensitivity not only between different tumors, but also within individual tumors and tumor-derived cell lines. MAR measurement predicted drug response using samples as small as 25 μl of peripheral blood while maintaining cell viability and compatibility with downstream characterization. MAR measurement is a promising approach for directly assaying single-cell therapeutic responses and for identifying cellular subpopulations with phenotypic resistance in heterogeneous tumors.

Collaboration


Dive into the Cecile L. Maire's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Azra H. Ligon

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Chibo Hong

University of California

View shared research outputs
Top Co-Authors

Avatar

Daofeng Li

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge