Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cécile Massiot is active.

Publication


Featured researches published by Cécile Massiot.


Nature | 2017

Extreme hydrothermal conditions at an active plate-bounding fault

Rupert Sutherland; John Townend; Virginia G. Toy; Phaedra Upton; Jamie Coussens; Michael F. Allen; Laura May Baratin; Nicolas Barth; Leeza Becroft; C. M. Boese; Austin Boles; Carolyn Boulton; Neil G. R. Broderick; Lucie Janku-Capova; Brett M. Carpenter; Bernard Célérier; Calum J. Chamberlain; Alan Cooper; Ashley Coutts; Simon J. Cox; Lisa Craw; Mai-Linh Doan; Jennifer Eccles; D. R. Faulkner; Jason Grieve; Julia Grochowski; Anton Gulley; Arthur Hartog; Jamie Howarth; Katrina Jacobs

Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300–450 degrees Celsius, usually found at depths greater than 10–15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional–mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.


Journal of Geophysical Research | 2015

Heterogeneity of structure and stress in the Rotokawa Geothermal Field, New Zealand

David D. McNamara; Cécile Massiot; Brandon Lewis; Irene C. Wallis

Geometric characterization of a geothermal reservoirs structures, and their relation to stress field orientation, is vital for resource development. Subsurface structure and stress field orientations of the Rotokawa Geothermal Field, New Zealand, have been studied, for the first time, using observations obtained from analysis of three acoustic borehole televiewer logs. While an overall NE-SW fracture strike exists, heterogeneity in fracture dip orientation is evident. Dominant dip direction changes from well to well due to proximity to variously oriented, graben-bounding faults. Fracture orientation heterogeneity also occurs within individual wells, where fractures clusters within certain depth intervals have antithetic dip directions to the wells dominant fracture dip direction. These patterns are consistent with expected antithetic faulting in extensional environments. A general SHmax orientation of NE-SW is determined from induced features on borehole walls. However, numerous localized azimuthal variations from this trend are evident, constituting stress field orientation heterogeneity. These variations are attributed to slip on fracture planes evidenced by changes in the azimuth of drilling-induced tensile fractures either side of a natural fracture. Correlation of observed fracture properties and patterns to well permeability indicators reveal that fractures play a role in fluid flow in the Rotokawa geothermal reservoir. Permeable zones commonly contain wide aperture fractures and high fracture densities which have a dominant NE-SW strike orientation and NW dip direction. Studies of this kind, which show strong interdependency of structure and stress field properties, are essential to understand fluid flow in geothermal reservoirs where structural permeability dominates.


Archive | 2012

The nature of fracture permeability in the basement greywacke at Kawerau Geothermal Field, New Zealand

J. Rowland; Irene C. Wallis; David D. McNamara; Cécile Massiot

The Mesozoic basement at Kawerau Geothermal Field comprises well indurated, inter-bedded sandstones and argillites with a complex structural history. These rocks have very low matrix porosity but nonetheless host both geothermal production and injection. Fluid flow therefore is localized in fault and fracture networks. The geometry of, and potential controls on, these fluid pathways is revealed by an integrated study of borehole acoustic image logs, geologic, drilling and reservoir data from two deep geothermal injection wells. Well permeability, as interpreted from pressure, temperature, and fluid velocity logs acquired during well completion testing, correlates with large aperture fractures and zones where cross-cutting fractures are densely distributed. The occurrence of large aperture fractures also correlates with the occurrence of high sandstone proportions in the drill cuttings. A similar spatial relationship between fracture aperture and rock type occurs in exposed basement greywacke hosted Kuaotunu epithermal deposit, Coromandel Peninsula, New Zealand. These observations demonstrate the importance of understanding material properties when exploiting and stimulating fracture permeability. Despite the complex structural history of the basement greywacke, nearly all large aperture fractures identified from image logs were found to be optimally orientated for reactivation within the modern stress field. Comparison between the orientations of fractures observed down-hole and the orientation of field-scale faults interpreted from vertical displacement between wells reveals a structural relationship across scales. An understanding of the relationship between the modern stress field, field-scale structures and fractures that contribute to wellbore flow can be applied to the mapping of reservoir fracture permeability.


New Zealand Journal of Geology and Geophysics | 2017

Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand

Virginia G. Toy; Rupert Sutherland; John Townend; Michael John Allen; Leeza Becroft; Austin Boles; Carolyn Boulton; Brett M. Carpenter; Alan Cooper; Simon C. Cox; Christopher Daube; D. R. Faulkner; Angela Halfpenny; Naoki Kato; Stephen Keys; Martina Kirilova; Yusuke Kometani; Timothy A. Little; Elisabetta Mariani; Benjamin Melosh; Catriona Menzies; Luiz F. G. Morales; Chance Morgan; Hiroshi Mori; André R. Niemeijer; Richard J. Norris; David J. Prior; Katrina Sauer; Anja M. Schleicher; Norio Shigematsu

ABSTRACT During the second phase of the Alpine Fault, Deep Fault Drilling Project (DFDP) in the Whataroa River, South Westland, New Zealand, bedrock was encountered in the DFDP-2B borehole from 238.5–893.2 m Measured Depth (MD). Continuous sampling and meso- to microscale characterisation of whole rock cuttings established that, in sequence, the borehole sampled amphibolite facies, Torlesse Composite Terrane-derived schists, protomylonites and mylonites, terminating 200–400 m above an Alpine Fault Principal Slip Zone (PSZ) with a maximum dip of 62°. The most diagnostic structural features of increasing PSZ proximity were the occurrence of shear bands and reduction in mean quartz grain sizes. A change in composition to greater mica:quartz + feldspar, most markedly below c. 700 m MD, is inferred to result from either heterogeneous sampling or a change in lithology related to alteration. Major oxide variations suggest the fault-proximal Alpine Fault alteration zone, as previously defined in DFDP-1 core, was not sampled.


Geochemistry Geophysics Geosystems | 2017

Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone

John Townend; Rupert Sutherland; Virginia G. Toy; Mai-Linh Doan; Bernard Célérier; Cécile Massiot; Jamie Coussens; Tamara N. Jeppson; Lucie Janku-Capova; Léa Remaud; Phaedra Upton; Douglas R. Schmitt; Philippe A. Pezard; John W. Williams; Michael John Allen; Laura May Baratin; Nicolas Barth; Leeza Becroft; C. M. Boese; Carolyn Boulton; Neil G. R. Broderick; Brett M. Carpenter; Calum J. Chamberlain; Alan Cooper; Ashley Coutts; Simon C. Cox; Lisa Craw; Jennifer Eccles; D. R. Faulkner; Jason Grieve

Fault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging-wall of the Alpine Fault during the second stage of the Deep Fault Drilling Project (DFDP-2). We present observational evidence for extensive fracturing and high hanging-wall hydraulic conductivity (∼10−9 to 10−7 m/s, corresponding to permeability of ∼10−16 to 10−14 m2) extending several hundred meters from the faults principal slip zone. Mud losses, gas chemistry anomalies, and petrophysical data indicate that a subset of fractures intersected by the borehole are capable of transmitting fluid volumes of several cubic meters on time scales of hours. DFDP-2 observations and other data suggest that this hydrogeologically active portion of the fault zone in the hanging-wall is several kilometers wide in the uppermost crust. This finding is consistent with numerical models of earthquake rupture and off-fault damage. We conclude that the mechanically and hydrogeologically active part of the Alpine Fault is a more dynamic and extensive feature than commonly described in models based on exhumed faults. We propose that the hydrogeologically active damage zone of the Alpine Fault and other large active faults in areas of high topographic relief can be subdivided into an inner zone in which damage is controlled principally by earthquake rupture processes and an outer zone in which damage reflects coseismic shaking, strain accumulation and release on interseismic timescales, and inherited fracturing related to exhumation.


Archive | 2015

Fracture width and spacing distributions from borehole televiewer logs and cores in the Rotokawa Geothermal Field, New Zealand

Cécile Massiot; John Townend; David D. McNamara; Andrew Nicol

The successful targeting of permeable fractures in geothermal fields is aided by understanding the spatial and geometric characteristics of fracture populations. Studies of numerous outcrop, and a limited number of geothermal reservoirs using cores and borehole logs, indicate that fracture frequency and width most commonly follow power-law distributions, with exponential, lognormal, gamma, and power-exponential distributions also reported. This paper presents the first statistical analysis of fracture width and spacing in the high-temperature Rotokawa Geothermal Field, Taupo Volcanic Zone, New Zealand. The fracture dataset comprises: (1) c. 3.6 km of acoustic borehole televiewer (BHTV) logs from three wells and, (2) c. 33 m of core. Statistical distributions have been fitted to the BHTV data using a maximum likelihood estimation method and statistical models selected using the Schwarz Bayesian Criterion. Fracture widths observed on BHTV logs range between c. 1 105 mm. Image resolution and sampling bias reduce the useable range of fracture width to less than one order of magnitude (c. 8 50 mm). Over this range, considering the sampling effects and core observations, the fracture width is best modelled by an exponential distribution with coefficients between 0.13±0.01 and 0.29±0.02, which should be treated as a lower bound. Analysis of fracture spacing of the four fracture sets identified on BHTV logs indicates that the dominant set (striking NE SW) is best modelled by a log-normal distribution, while power-law, power-exponential and gamma are also possible for individual wells. These spacing distributions indicate the presence of a characteristic scale which has not been observed in other geothermal reservoirs hosted in crystalline formations. The characteristic scale may be associated with mechanical interfaces associated with stratigraphic layering, faults, or cooling joints and/or sub-horizontal flow-banding in andesitic formations. Stratigraphic layering can consist of a succession of lava flows with intercalated breccia layers in the andesites, welding variations in tuffs and sedimentary layering in the sedimentary formations sampled by the BHTV logs. The subordinate fracture set striking N S is best modelled by a pareto (power-law) distribution which suggests that the spacing is more likely to be controlled by tectonic processes than by layering. This N S fracture set is predominant in only one of the wells studied which may indicate a structural control on their occurrence in the vicinity of this well. Low fracture spacing (<0.5 5 m) is best modelled by an exponential distribution and higher spacing by lognormal or pareto (power-law) distributions, except for the N – S striking dataset and the NE – SW striking fracture set in well RK32. The change of distribution model at different scales may be linked to the threshold at which fractures start interacting with each other. This work to date underlines the need to combine data spanning a broad range of length scales to conduct a sound statistical analysis of fracture populations and highlights the control on fracture formation by a combination of processes including tectonics, lava cooling and stress perturbations associated with stratigraphic anisotropy. The resulting distributions provide a basis for simulating and calibrating fracture models of geothermal reservoirs beyond those areas directly sampled with BHTV logs or cores and will integrate variations observed over a range of scales between the study wells.


Archive | 2012

Statistical corrections of fracture sampling bias in boreholes from acoustic televiewer logs

G. Bignall; David D. McNamara; Brandon Lewis; L. Price; Cécile Massiot

Targeting structurally controlled permeability remains a challenge in high temperature geothermal fields, because of the difficulties in characterising faults and fractures and their behaviour within the reservoir. The large-scale structural framework of a reservoir is usually well defined from offsets of key marker stratigraphic units intersected by wells. Some of these large-scale faults significantly contribute to reservoir permeability. Smaller-scale structures, particularly inferred active fractures, are also of major importance for the vertical and lateral flow of fluid within fractured formations. To identify the structures directly within the formations, acoustic televiewer logs are acquired in New Zealand geothermal fields with the advent of the Acoustic Formation Imaging Technology (AFIT) tool, which is rated to 300°C. This wireline logging tool acquires a full 360° acoustic image of the inside of the borehole. Typically, fractures have different acoustic impedances from the wall-rock formation and appear as discordant features on the image, which can be systematically picked during image analysis. Each fracture has its true orientation (dip/dip direction) calculated in-situ taking into account image orientation and well deviation. The detailed analysis of these wireline logs provides insights on the nature, distribution, aperture and orientation of the fractures directly at the borehole wall. This information can be correlated to other logs to identify which structures may be open to fluid flow. However, fractures sub-parallel to the borehole axis will be undersampled as fewer are intersected by the well. Here we describe a technique which we use to statistically correct for the natural bias involved when counting fractures intersected by a borehole at various angles. We demonstrate the impact that this bias can have on the structural characterisation of a fractured reservoir from acoustic televiewer images, using examples from four AFIT log intervals acquired in the Rotokawa Andesite, Rotokawa Geothermal Field (New Zealand). This correction provides a more accurate representation of the true structural character of the reservoir. The resultant, improved dataset allows for greater confidence in reservoir characterisation, future well targeting, as well as fracture and reservoir modelling.


Journal of Geophysical Research | 2017

Statistical methods of fracture characterization using acoustic borehole televiewer log interpretation

Cécile Massiot; John Townend; Andrew Nicol; David D. McNamara

Acoustic borehole televiewer (BHTV) logs provide measurements of fracture attributes (orientations, thickness, and spacing) at depth. Orientation, censoring, and truncation sampling biases similar to those described for one-dimensional outcrop scanlines, and other logging or drilling artifacts specific to BHTV logs, can affect the interpretation of fracture attributes from BHTV logs. K-means, fuzzy K-means, and agglomerative clustering methods provide transparent means of separating fracture groups on the basis of their orientation. Fracture spacing is calculated for each of these fracture sets. Maximum likelihood estimation using truncated distributions permits the fitting of several probability distributions to the fracture attribute data sets within truncation limits, which can then be extrapolated over the entire range where they naturally occur. Akaike Information Criterion (AIC) and Schwartz Bayesian Criterion (SBC) statistical information criteria rank the distributions by how well they fit the data. We demonstrate these attribute analysis methods with a data set derived from three BHTV logs acquired from the high-temperature Rotokawa geothermal field, New Zealand. Varying BHTV log quality reduces the number of input data points, but careful selection of the quality levels where fractures are deemed fully sampled increases the reliability of the analysis. Spacing data analysis comprising up to 300 data points and spanning three orders of magnitude can be approximated similarly well (similar AIC rankings) with several distributions. Several clustering configurations and probability distributions can often characterize the data at similar levels of statistical criteria. Thus, several scenarios should be considered when using BHTV log data to constrain numerical fracture models.


Archive | 2016

Exploring structure and stress from depth to surface in the Wairakei Geothermal Field, New Zealand

Cécile Massiot; Pilar Villamor; Sarah D. Milicich; David D. McNamara; Fabian Sepúlveda; Stephen Bannister; Samantha Alcaraz

Structures such as fractures and faults have an important role as fluid flow pathways in geothermal fields, as the reservoir rocks hosting geothermal resources can often have little to no intrinsic permeability. As such, understanding and characterizing this structural network is vital to developing reservoir models and field operation and development plans that will maximize the potential of a geothermal resource. Presented here are the preliminary results of three recent studies, micro-earthquake analysis, borehole logging, and active fault mapping, carried out in the Wairakei Geothermal Field to determine the structural character of the system, if and how it contributes to fluid flow, and how the structural observations from these studies inform and relate to each other. Across all three techniques a dominant NE-SW structure strike orientation is observed with lesser population of N-S, E-W and NW-SE, consistent with the broad Taupo Volcanic Zone observed trend. Further analysis of the data is required to resolve important structural questions around the Wairakei Geothermal Field including: whether the data supports the model of the Wairakei Geothermal Field being an expression of enhanced permeability due to its location in an inferred rift accommodation zone, how the links between observed structures at the surface and subsurface can be resolved, and what role to these structures play in geothermal fluid flow from depth to surface?


Geochemistry Geophysics Geosystems | 2018

The Alpine Fault Hangingwall Viewed From Within: Structural Analysis of Ultrasonic Image Logs in the DFDP‐2B Borehole, New Zealand

Cécile Massiot; Bernard Célérier; Mai-Linh Doan; Timothy A. Little; John Townend; David D. McNamara; John D. Williams; Douglas R. Schmitt; Virginia G. Toy; Rupert Sutherland; Lucie Janku-Capova; Phaedra Upton; Philippe A. Pezard

Ultrasonic image logs acquired in the DFDP‐2B borehole yield the first continuous, subsurface description of the transition from schist to mylonite in the hangingwall of the Alpine Fault, New Zealand, to a depth of 818 m below surface. Three feature sets are delineated. One set, comprising foliation and foliation‐parallel veins and fractures, has a constant orientation. The average dip direction of 145° is subparallel to the dip direction of the Alpine Fault, and the average dip magnitude of 60° is similar to nearby outcrop observations of foliation in the Alpine mylonites that occur immediately above the Alpine Fault. We suggest that this foliation orientation is similar to the Alpine Fault plane at ∼1 km depth in the Whataroa valley. The other two auxiliary feature sets are interpreted as joints based on their morphology and orientation. Subvertical joints with NW‐SE (137°) strike occurring dominantly above ∼500 m are interpreted as being formed during the exhumation and unloading of the Alpine Faults hangingwall. Gently dipping joints, predominantly observed below ∼500 m, are interpreted as inherited hydrofractures exhumed from their depth of formation. These three fracture sets, combined with subsidiary brecciated fault zones, define the fluid pathways and anisotropic permeability directions. In addition, high topographic relief, which perturbs the stress tensor, likely enhances the slip potential and thus permeability of subvertical fractures below the ridges, and of gently dipping fractures below the valleys. Thus, DFDP‐2B borehole observations support the inference of a large zone of enhanced permeability in the hangingwall of the Alpine Fault.

Collaboration


Dive into the Cécile Massiot's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Townend

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rupert Sutherland

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar

Andrew Nicol

University of Canterbury

View shared research outputs
Top Co-Authors

Avatar

Lucie Janku-Capova

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge