Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cécile Ménez is active.

Publication


Featured researches published by Cécile Ménez.


International Journal for Parasitology-Drugs and Drug Resistance | 2012

P-glycoproteins and other multidrug resistance transporters in the pharmacology of anthelmintics: Prospects for reversing transport-dependent anthelmintic resistance

Anne Lespine; Cécile Ménez; Catherine Bourguinat; Roger K. Prichard

Parasitic helminths cause significant disease in animals and humans. In the absence of alternative treatments, anthelmintics remain the principal agents for their control. Resistance extends to the most important class of anthelmintics, the macrocyclic lactone endectocides (MLs), such as ivermectin, and presents serious problems for the livestock industries and threatens to severely limit current parasite control strategies in humans. Understanding drug resistance is important for optimizing and monitoring control, and reducing further selection for resistance. Multidrug resistance (MDR) ABC transporters have been implicated in ML resistance and contribute to resistance to a number of other anthelmintics. MDR transporters, such as P-glycoproteins, are essential for many cellular processes that require the transport of substrates across cell membranes. Being overexpressed in response to chemotherapy in tumour cells and to ML-based treatment in nematodes, they lead to therapy failure by decreasing drug concentration at the target. Several anthelmintics are inhibitors of these efflux pumps and appropriate combinations can result in higher treatment efficacy against parasites and reversal of resistance. However, this needs to be balanced against possible increased toxicity to the host, or the components of the combination selecting on the same genes involved in the resistance. Increased efficacy could result from modifying anthelmintic pharmacokinetics in the host or by blocking parasite transporters involved in resistance. Combination of anthelmintics can be beneficial for delaying selection for resistance. However, it should be based on knowledge of resistance mechanisms and not simply on mode of action classes, and is best started before resistance has been selected to any member of the combination. Increasing knowledge of the MDR transporters involved in anthelmintic resistance in helminths will play an important role in allowing for the identification of markers to monitor the spread of resistance and to evaluate new tools and management practices aimed at delaying its spread.


International Journal for Parasitology-Drugs and Drug Resistance | 2012

Moxidectin and the avermectins: Consanguinity but not identity.

Roger K. Prichard; Cécile Ménez; Anne Lespine

The avermectins and milbemycins contain a common macrocyclic lactone (ML) ring, but are fermentation products of different organisms. The principal structural difference is that avermectins have sugar groups at C13 of the macrocyclic ring, whereas the milbemycins are protonated at C13. Moxidectin (MOX), belonging to the milbemycin family, has other differences, including a methoxime at C23. The avermectins and MOX have broad-spectrum activity against nematodes and arthropods. They have similar but not identical, spectral ranges of activity and some avermectins and MOX have diverse formulations for great user flexibility. The longer half-life of MOX and its safety profile, allow MOX to be used in long-acting formulations. Some important differences between MOX and avermectins in interaction with various invertebrate ligand-gated ion channels are known and could be the basis of different efficacy and safety profiles. Modelling of IVM interaction with glutamate-gated ion channels suggest different interactions will occur with MOX. Similarly, profound differences between MOX and the avermectins are seen in interactions with ABC transporters in mammals and nematodes. These differences are important for pharmacokinetics, toxicity in animals with defective transporter expression, and probable mechanisms of resistance. Resistance to the avermectins has become widespread in parasites of some hosts and MOX resistance also exists and is increasing. There is some degree of cross-resistance between the avermectins and MOX, but avermectin resistance and MOX resistance are not identical. In many cases when resistance to avermectins is noticed, MOX produces a higher efficacy and quite often is fully effective at recommended dose rates. These similarities and differences should be appreciated for optimal decisions about parasite control, delaying, managing or reversing resistances, and also for appropriate anthelmintic combination.


International Journal for Parasitology-Drugs and Drug Resistance | 2014

Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions

Andrew C. Kotze; Peter W. Hunt; Philip Skuce; Georg von Samson-Himmelstjerna; Richard J. Martin; Heinz Sager; Jürgen Krücken; Jane E. Hodgkinson; Anne Lespine; Aaron R. Jex; John S. Gilleard; Robin N. Beech; Adrian J. Wolstenholme; Janina Demeler; Alan P. Robertson; Claude L. Charvet; Cedric Neveu; Ronald Kaminsky; Lucien Rufener; Melanie Alberich; Cécile Ménez; Roger K. Prichard

Graphical abstract


Drug Metabolism and Disposition | 2010

Role of P-glycoprotein in the disposition of macrocyclic lactones: a comparison between ivermectin, eprinomectin and moxidectin in mice

Solange Kiki-Mvouaka; Cécile Ménez; Christiane Borin; Faouri Lyazrhi; Magali Foucaud-Vignault; Jacques Dupuy; Xavier Collet; M. Alvinerie; Anne Lespine

Macrocyclic lactones (MLs) are lipophilic anthelmintics and substrates for P-glycoprotein (P-gp), an ATP-binding cassette transporter involved in drug efflux out of both host and parasites. To evaluate the contribution of P-gp to the in vivo kinetic disposition of MLs, the plasma kinetics, brain concentration, and intestinal excretion of three structurally different MLs (ivermectin, eprinomectin, and moxidectin) were compared in wild-type and P-gp-deficient [mdr1ab(−/−)] mice. Each drug (0.2 mg/kg) was administered orally, intravenously, or subcutaneously to the mice. Plasma, brain, and intestinal tissue concentrations were measured by high-performance liquid chromatography. The intestinal excretion rate after intravenous administration was determined at different levels of the small intestine by using an in situ intestinal perfusion model. P-gp deficiency led to a significant increase in the area under the plasma concentration-time curve (AUC) of ivermectin (1.5-fold) and eprinomectin (3.3-fold), whereas the moxidectin AUC was unchanged. Ivermectin and to a greater extent eprinomectin were both excreted by the intestine via a P-gp-dependent pathway, whereas moxidectin excretion was weaker and mostly P-gp-independent. The three drugs accumulated in the brains of the mdr1ab(−/−) mice, but eprinomectin concentrations were significantly lower. We concluded that eprinomectin disposition in mice is controlled mainly by P-gp efflux, more so than that of ivermectin, whereas moxidectin disposition appears to be mostly P-gp-independent. Given that eprinomectin and ivermectin have higher affinity for P-gp than moxidectin, these findings demonstrated that the relative affinity of MLs for P-gp could be predictive of the in vivo kinetic behavior of these drugs.


Chemico-Biological Interactions | 2010

Interaction of anthelmintic drugs with P-glycoprotein in recombinant LLC-PK1-mdr1a cells.

Jacques Dupuy; M. Alvinerie; Cécile Ménez; Anne Lespine

Given the widespread use of formulations combining anthelmintics which are possible P-glycoprotein interfering agents, the understanding of drug interactions with efflux ABC transporters is of concern for improving anthelmintic control. We determined the ability of 14 anthelmintics from different classes to interact with abcb1a (mdr1a, P-glycoprotein, Pgp) by following the intracellular accumulation of rhodamine 123 (Rho 123), a fluorescent Pgp substrate, in LLC-PK1 cells overexpressing Pgp. The cytotoxicity of the compounds that are able to interfere with Pgp activity was evaluated in cells overexpressing Pgp and compared with parental cells using the MTS viability assay. Among all the anthelmintics used, ivermectin (IVM), triclabendazole (TCZ), triclabendazole sulfoxide (TCZ-SO), closantel (CLOS) and rafoxanide (RAF) increased the intracellular Rho 123 in Pgp overexpressing cells, while triclabendazole sulfone, albendazole, mebendazole, oxfendazole, thiabendazole, nitroxynil, levamisole, praziquantel and clorsulon failed to have any effect. The concentration needed to reach the maximal Rho 123 accumulation (E(max)) was obtained with 10 microM for IVM, 80 microM for CLOS, 40 microM for TCZ and TCZ-SO, and 80 microM for RAF. We showed that for these five drugs parental cell line was more sensitive to drug toxicity compared with Pgp recombinant cell line. Such in vitro approach constitutes a powerful tool to predict Pgp-drug interactions when formulations combining several anthelmintics are administered and may contribute to the required optimization of efficacy of anthelmintics.


Biochemical Pharmacology | 2012

Ivermectin induces P-glycoprotein expression and function through mRNA stabilization in murine hepatocyte cell line

Cécile Ménez; Laila Mselli-Lakhal; Magali Foucaud-Vignault; Patrick Balaguer; M. Alvinerie; Anne Lespine

Ivermectin is widely used in human and veterinary medicine for the control of helminth infections. Ivermectin is known to interact with P-glycoprotein (P-gp/MDR1), being a good substrate and a potent inhibitor, however, the influence of ivermectin on the expression of the transporter has not been investigated. Expression of P-glycoprotein was investigated in cultured mouse hepatocytes acutely exposed to ivermectin. The two P-glycoprotein murine isoforms, Mdr1a and Mdr1b, mRNA levels were assessed by real-time RT-PCR. Ivermectin induced a clear time- and concentration-dependent up-regulation of Mdr1a and Mdr1b mRNA levels (as early as a 12-h exposure and up to 2.5-fold at 10μM). Moreover, ivermectin-treated cells displayed enhanced cellular efflux of the P-glycoprotein substrate calcein that was inhibited by the P-glycoprotein blocker valspodar, providing evidence that the ivermectin-induced P-glycoprotein was functional. The mechanisms underlying these effects were investigated. Ivermectin-mediated Mdr1 mRNA induction was independent of the two nuclear receptors CAR and PXR, which are known to be involved in drug transporters regulation. Moreover, by using reporter cell lines that detects specific ligand-activated transcription factors, we showed that ivermectin did not displayed CAR, PXR or AhR ligand activities. However, studies with actinomycin D revealed that the half-life of Mdr1a and Mdr1b mRNA were significantly prolonged by two-fold in ivermectin-treated cells suggesting a post-transcriptional mode of ivermectin regulation. This study demonstrates for the first time that ivermectin induces P-glycoprotein overexpression through post-transcriptional mRNA stabilization, thus offering insight into the mechanism of reduced therapeutic efficacy and development of ivermectin-resistant parasites.


Pharmaceutical Research | 2007

Intestinal Absorption of Miltefosine: Contribution of Passive Paracellular Transport

Cécile Ménez; Marion Buyse; Christophe Dugave; Robert Farinotti; Gillian Barratt

PurposeThis study aimed to characterize the transepithelial transport of miltefosine (HePC), the first orally effective drug against visceral leishmaniasis, across the intestinal barrier to further understand its oral absorption mechanism.Materials and MethodsCaco-2 cell monolayers were used as an in vitro model of the human intestinal barrier. The roles of active and passive mechanisms in HePC intestinal transport were investigated and the relative contributions of the transcellular and paracellular routes were estimated.ResultsHePC transport was observed to be pH-independent, partially temperature-dependent, linear as a function of time and non-saturable as a function of concentration. The magnitude of HePC transport was quite similar to that of the paracellular marker mannitol, and EDTA treatment led to an increase in HePC transport. Furthermore, HePC transport was found to be similar in the apical-to-basolateral and basolateral-to-apical directions, strongly suggesting that HePC exhibits non-polarized transport and that no MDR-mediated efflux was involved.ConclusionsThese results demonstrate that HePC crosses the intestinal epithelium by a non-specific passive pathway and provide evidence supporting a concentration-dependent paracellular transport mechanism, although some transcellular diffusion cannot be ruled out. Considering that HePC opens epithelial tight junctions, this study shows that HePC may promote its own permeation across the intestinal barrier.


PLOS Neglected Tropical Diseases | 2012

Relative Neurotoxicity of Ivermectin and Moxidectin in Mdr1ab (−/−) Mice and Effects on Mammalian GABA(A) Channel Activity

Cécile Ménez; Jean Francois Sutra; Roger K. Prichard; Anne Lespine

The anthelmintics ivermectin (IVM) and moxidectin (MOX) display differences in toxicity in several host species. Entrance into the brain is restricted by the P-glycoprotein (P-gp) efflux transporter, while toxicity is mediated through the brain GABA(A) receptors. This study compared the toxicity of IVM and MOX in vivo and their interaction with GABA(A) receptors in vitro. Drug toxicity was assessed in Mdr1ab(−/−) mice P-gp-deficient after subcutaneous administration of increasing doses (0.11–2.0 and 0.23–12.9 µmol/kg for IVM and MOX in P-gp-deficient mice and half lethal doses (LD50) in wild-type mice). Survival was evaluated over 14-days. In Mdr1ab(−/−) mice, LD50 was 0.46 and 2.3 µmol/kg for IVM and MOX, respectively, demonstrating that MOX was less toxic than IVM. In P-gp-deficient mice, MOX had a lower brain-to-plasma concentration ratio and entered into the brain more slowly than IVM. The brain sublethal drug concentrations determined after administration of doses close to LD50 were, in Mdr1ab(−/−) and wild-type mice, respectively, 270 and 210 pmol/g for IVM and 830 and 740–1380 pmol/g for MOX, indicating that higher brain concentrations are required for MOX toxicity than IVM. In rat α1β2γ2 GABA channels expressed in Xenopus oocytes, IVM and MOX were both allosteric activators of the GABA-induced response. The Hill coefficient was 1.52±0.45 for IVM and 0.34±0.56 for MOX (p<0.001), while the maximum potentiation caused by IVM and MOX relative to GABA alone was 413.7±66.1 and 257.4±40.6%, respectively (p<0.05), showing that IVM causes a greater potentiation of GABA action on this receptor. Differences in the accumulation of IVM and MOX in the brain and in the interaction of IVM and MOX with GABA(A) receptors account for differences in neurotoxicity seen in intact and Mdr1-deficient animals. These differences in neurotoxicity of IVM and MOX are important in considering their use in humans.


Antimicrobial Agents and Chemotherapy | 2006

Interaction between Miltefosine and Amphotericin B: Consequences for Their Activities towards Intestinal Epithelial Cells and Leishmania donovani Promastigotes In Vitro

Cécile Ménez; Marion Buyse; Madeleine Besnard; Robert Farinotti; Philippe M. Loiseau; Gillian Barratt

ABSTRACT The aim of this study was to evaluate the potential of a combination of two antileishmanial drugs, miltefosine (HePC) and amphotericin B (AMB), when administered by the oral route. Caco-2 cell monolayers were used as a validated in vitro model of the intestinal barrier and Leishmania donovani promastigotes as a model for evaluating the effect of the drug combination. Spectroscopic measurements demonstrated that HePC and AMB associate, leading to the formation of mixed aggregates in which AMB is solubilized as monomers. The incubation of the association of HePC and AMB with Caco-2 cell monolayers, at a concentration higher than 5 μM, led to (i) a reduction of the HePC-induced paracellular permeability enhancement in Caco-2 cell monolayers, (ii) an inhibition of the uptake of both drugs, and (iii) a decrease in the transepithelial transport of both drugs, suggesting that a pharmacokinetic antagonism between HePC and AMB could occur after their oral administration. However, the combination did not exhibit any antagonism or synergy in its antileishmanial activity. These results demonstrated a strong physicochemical interaction between HePC and AMB, depending on the concentration of each, which could have important consequences for their biological activities, if they are administered together.


PLOS ONE | 2011

P-glycoprotein dysfunction contributes to hepatic steatosis and obesity in mice.

Magali Foucaud-Vignault; Zeina Soayfane; Cécile Ménez; Justine Bertrand-Michel; Pascal Martin; Hervé Guillou; Xavier Collet; Anne Lespine

Although the main role of P-glycoprotein (Pgp) is to extrude a broad range of xenochemicals and to protect the organism against xenotoxicity, it also transports a large range of endogenous lipids. Using mice lacking Pgp, we have investigated the possible involvement of Pgp in lipid homeostasis in vivo. In a long term study, we have followed the food intake, body status and lipid markers in plasma and liver of wild-type and mdr1ab-/- mice over 35 weeks. Pgp-deficient mice showed excess weight, hypertrophy of adipose mass, high insulin and glucose levels in plasma. Some of these metabolic disruptions appeared earlier in Pgp-deficient mice fed high-fat diet. Moreover, hepatosteatosis with increased expression of genes involved in liver detoxification and in de novo lipid synthesis occurred in Pgp-deficient mice. Overall, Pgp deficiency clearly induced obesity in FVB genetic background, which is known to be resistant to diet-induced obesity. These data reinforce the finding that Pgp gene could be a contributing factor and possibly a relevant marker for lipid disorder and obesity. Subsequent to Pgp deficiency, changes in body availabilities of lipids or any Pgp substrates may affect metabolic pathways that favour the occurrence of obesity. This is of special concern because people are often facing simultaneous exposition to many xenochemicals, which inhibits Pgp, and an excess in lipid dietary intake that may contribute to the high prevalence of obesity in our occidental societies.

Collaboration


Dive into the Cécile Ménez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Alvinerie

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Magali Foucaud-Vignault

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacques Dupuy

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roger Prichard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Cedric Neveu

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge