Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cécile Morlot is active.

Publication


Featured researches published by Cécile Morlot.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Structural Insights Into the Slit-Robo Complex.

Cécile Morlot; Nicole M. Thielens; Raimond B. G. Ravelli; Wieger Hemrika; Roland A. Romijn; Piet Gros; Stephen Cusack; Andrew A. McCarthy

Slits are large multidomain leucine-rich repeat (LRR)-containing proteins that provide crucial guidance cues in neuronal and vascular development. More recently, Slits have been implicated in heart morphogenesis, angiogenesis, and tumor metastasis. Slits are ligands for the Robo (Roundabout) receptors, which belong to the Ig superfamily of transmembrane signaling molecules. The Slit-Robo interaction is mediated by the second LRR domain of Slit and the two N-terminal Ig domains of Robo, but the molecular details of this interaction and how it induces signaling remain unclear. Here we describe the crystal structures of the second LRR domain of human Slit2 (Slit2 D2), the first two Ig domains of its receptor Robo1 (Ig1–2), and the minimal complex between these proteins (Slit2 D2-Robo1 Ig1). Slit2 D2 binds with its concave surface to the side of Ig1 with electrostatic and hydrophobic contact regions mediated by residues that are conserved in other family members. Surface plasmon resonance experiments and a mutational analysis of the interface confirm that Ig1 is the primary domain for binding Slit2. These structures provide molecular insight into Slit-Robo complex formation and will be important for the development of novel cancer therapeutics.


Molecular Microbiology | 2003

Growth and division of Streptococcus pneumoniae: localization of the high molecular weight penicillin-binding proteins during the cell cycle

Cécile Morlot; André Zapun; Otto Dideberg; Thierry Vernet

The bacterial peptidoglycan, the main component of the cell wall, is synthesized by the penicillin‐binding proteins (PBPs). We used immunofluorescence microscopy to determine the cellular localization of all the high molecular weight PBPs of the human pathogen Streptococcus pneumoniae, for a wild type and for several PBP‐deficient strains. Progression through the cell cycle was investigated by the simultaneous labelling of DNA and the FtsZ protein. Our main findings are: (i) the temporal dissociation of cell wall synthesis, inferred by the localization of PBP2x and PBP1a, from the constriction of the FtsZ‐ring; (ii) the localization of PBP2b and PBP2a at duplicated equatorial sites indicating the existence of peripheral peptidoglycan synthesis, which implies a similarity between the mechanism of cell division in bacilli and streptococci; (iii) the abnormal localization of some class A PBPs in PBP‐defective mutants which may explain the apparent redundancy of these proteins in S. pneumoniae.


Molecular Microbiology | 2004

The d,d‐carboxypeptidase PBP3 organizes the division process of Streptococcus pneumoniae

Cécile Morlot; Marjolaine Noirclerc-Savoye; André Zapun; Otto Dideberg; Thierry Vernet

Bacterial division requires the co‐ordination of membrane invagination, driven by the constriction of the FtsZ‐ring, and concomitant cell wall synthesis, performed by the high‐molecular‐weight penicillin‐binding proteins (HMW PBPs). Using immunofluorescence techniques, we show in Streptococcus pneumoniae that this co‐ordination requires PBP3, a d,d‐carboxypeptidase that degrades the substrate of the HMW PBPs. In a mutant deprived of PBP3, the apparent rings of HMW PBPs and that of FtsZ are no longer co‐localized. In wild‐type cells, PBP3 is absent at the future division site and present over the rest of the cell surface, implying that the localization of the HMW PBPs at mid‐cell depends on the availability of their substrate. FtsW, a putative translocase of the substrate of the PBPs, forms an apparent ring that is co‐localized with the septal HMW PBPs throughout the cell cycle of wild‐type cells. In particular, the constriction of the FtsW‐ring occurs after that of the FtsZ‐ring, with the same delay as the constriction of the septal PBP‐rings. However, in the absence of PBP3, FtsW remains co‐localized with FtsZ in contrast to the HMW PBPs. Our work reveals an unexpected complexity in the relationships between the division proteins. The consequences of the absence of PBP3 indicate that the peptidoglycan composition is central to the co‐ordination of the division process.


PLOS Genetics | 2009

Novel Secretion Apparatus Maintains Spore Integrity and Developmental Gene Expression in Bacillus subtilis

Thierry Doan; Cécile Morlot; Jeffrey Meisner; Mónica Serrano; Adriano O. Henriques; Charles P. Moran; David Z. Rudner

Sporulation in Bacillus subtilis involves two cells that follow separate but coordinately regulated developmental programs. Late in sporulation, the developing spore (the forespore) resides within a mother cell. The regulation of the forespore transcription factor σG that acts at this stage has remained enigmatic. σG activity requires eight mother-cell proteins encoded in the spoIIIA operon and the forespore protein SpoIIQ. Several of the SpoIIIA proteins share similarity with components of specialized secretion systems. One of them resembles a secretion ATPase and we demonstrate that the ATPase motifs are required for σG activity. We further show that the SpoIIIA proteins and SpoIIQ reside in a multimeric complex that spans the two membranes surrounding the forespore. Finally, we have discovered that these proteins are all required to maintain forespore integrity. In their absence, the forespore develops large invaginations and collapses. Importantly, maintenance of forespore integrity does not require σG. These results support a model in which the SpoIIIA-SpoIIQ proteins form a novel secretion apparatus that allows the mother cell to nurture the forespore, thereby maintaining forespore physiology and σG activity during spore maturation.


Genes & Development | 2010

A highly coordinated cell wall degradation machine governs spore morphogenesis in Bacillus subtilis

Cécile Morlot; Tsuyoshi Uehara; Kathleen A. Marquis; Thomas G. Bernhardt; David Z. Rudner

How proteins catalyze morphogenesis is an outstanding question in developmental biology. In bacteria, morphogenesis is intimately linked to remodeling the cell wall exoskeleton. Here, we investigate the mechanisms by which the mother cell engulfs the prospective spore during sporulation in Bacillus subtilis. A membrane-anchored protein complex containing two cell wall hydrolases plays a central role in this morphological process. We demonstrate that one of the proteins (SpoIIP) has both amidase and endopeptidase activities, such that it removes the stem peptides from the cell wall and cleaves the cross-links between them. We further show that the other protein (SpoIID) is the founding member of a new family of lytic transglycosylases that degrades the glycan strands of the peptidoglycan into disaccharide units. Importantly, we show that SpoIID binds the cell wall, but will only cleave the glycan strands after the stem peptides have been removed. Finally, we demonstrate that SpoIID also functions as an enhancer of SpoIIP activity. Thus, this membrane-anchored enzyme complex is endowed with complementary, sequential, and stimulatory activities. These activities provide a mechanism for processive cell wall degradation, supporting a model in which circumferentially distributed degradation machines function as motors pulling the mother cell membranes around the forespore.


Molecular Microbiology | 2004

In vitro reconstitution of a trimeric complex of DivIB, DivIC and FtsL, and their transient co‐localization at the division site in Streptococcus pneumoniae

Marjolaine Noirclerc-Savoye; Audrey Le Gouëllec; Cécile Morlot; Otto Dideberg; Thierry Vernet; André Zapun

DivIB, DivIC and FtsL are bacterial proteins essential for cell division, which show interdependencies for their stabilities and localization. We have reconstituted in vitro a trimeric complex consisting of the recombinant extracellular domains of the three proteins from Streptococcus pneumoniae. The extracellular domain of DivIB was found to associate with a heterodimer of those of DivIC and FtsL. The heterodimerization of DivIC and FtsL was artificially constrained by fusion with interacting coiled‐coils. Immunofluorescence experiments showed that DivIC is always localized at mid‐cell, in contrast to DivIB and FtsL, which are co‐localized with DivIC only during septation. Taken together, our data suggest that assembly of the trimeric complex DivIB/DivIC/FtsL is regulated during the cell cycle through controlled formation of the DivIC/FtsL heterodimer.


Journal of Biological Chemistry | 2005

Crystal Structure of a Peptidoglycan Synthesis Regulatory Factor (PBP3) from Streptococcus pneumoniae

Cécile Morlot; Lucile Pernot; Audrey Le Gouëllec; Anne Marie Di Guilmi; Thierry Vernet; Otto Dideberg; Andréa Dessen

Penicillin-binding proteins (PBPs) are membrane-associated enzymes which perform critical functions in the bacterial cell division process. The single d-Ala,d-Ala (d,d)-carboxypeptidase in Streptococcus pneumoniae, PBP3, has been shown to play a key role in control of availability of the peptidoglycal substrate during cell growth. Here, we have biochemically characterized and solved the crystal structure of a soluble form of PBP3 to 2.8 Å resolution. PBP3 folds into an NH2-terminal, d,d-carboxypeptidase-like domain, and a COOH-terminal, elongated β-rich region. The carboxypeptidase domain harbors the classic signature of the penicilloyl serine transferase superfamily, in that it contains a central, five-stranded antiparallel β-sheet surrounded by α-helices. As in other carboxypeptidases, which are present in species whose peptidoglycan stem peptide has a lysine residue at the third position, PBP3 has a 14-residue insertion at the level of its omega loop, a feature that distinguishes it from carboxypeptidases from bacteria whose peptidoglycan harbors a diaminopimelate moiety at this position. PBP3 performs substrate acylation in a highly efficient manner (kcat/Km = 50,500 m–1·s–1), an event that may be linked to role in control of pneumococcal peptidoglycan reticulation. A model that places PBP3 poised vertically on the bacterial membrane suggests that its COOH-terminal region could act as a pedestal, placing the active site in proximity to the peptidoglycan and allowing the protein to “skid” on the surface of the membrane, trimming pentapeptides during the cell growth and division processes.


Molecular Microbiology | 2013

Interaction of Penicillin‐Binding Protein 2x and Ser/Thr protein kinase StkP, two key players in Streptococcus pneumoniae R6 morphogenesis

Cécile Morlot; L. Bayle; Maxime Jacq; Aurore Fleurie; Guillaume Tourcier; Frédéric Galisson; Thierry Vernet; Christophe Grangeasse; A. M. Di Guilmi

Bacterial cell growth and division require the co‐ordinated action of peptidoglycan biosynthetic enzymes and cell morphogenesis proteins. However, the regulatory mechanisms that allow generating proper bacterial shape and thus preserving cell integrity remain largely uncharacterized, especially in ovococci. Recently, the conserved eukaryotic‐like Ser/Thr protein kinase of Streptococcus pneumoniae (StkP) was demonstrated to play a major role in cell shape and division. Here, we investigate the molecular mechanisms underlying the regulatory function(s) of StkP and show that it involves one of the essential actors of septal peptidoglycan synthesis, Penicillin‐Binding Protein 2x (PBP2x). We demonstrate that StkP and PBP2x interact directly and are present in the same membrane‐associated complex in S. pneumoniae. We further show that they both display a late‐division localization pattern at the division site and that the positioning of PBP2x depends on the presence of the extracellular PASTA domains of StkP. We demonstrate that StkP and PBP2x interaction is mediated by their extracellular regions and that the complex formation is inhibited in vitro in the presence of cell wall fragments. These data suggest that the role of StkP in cell division is modulated by an interaction with PBP2x.


Mbio | 2015

Remodeling of the Z-Ring Nanostructure during the Streptococcus pneumoniae Cell Cycle Revealed by Photoactivated Localization Microscopy

Maxime Jacq; Virgile Adam; Dominique Bourgeois; Christine Moriscot; Anne-Marie Di Guilmi; Thierry Vernet; Cécile Morlot

ABSTRACT Ovococci form a morphological group that includes several human pathogens (enterococci and streptococci). Their shape results from two modes of cell wall insertion, one allowing division and one allowing elongation. Both cell wall synthesis modes rely on a single cytoskeletal protein, FtsZ. Despite the central role of FtsZ in ovococci, a detailed view of the in vivo nanostructure of ovococcal Z-rings has been lacking thus far, limiting our understanding of their assembly and architecture. We have developed the use of photoactivated localization microscopy (PALM) in the ovococcus human pathogen Streptococcus pneumoniae by engineering spDendra2, a photoconvertible fluorescent protein optimized for this bacterium. Labeling of endogenously expressed FtsZ with spDendra2 revealed the remodeling of the Z-rings morphology during the division cycle at the nanoscale level. We show that changes in the rings axial thickness and in the clustering propensity of FtsZ correlate with the advancement of the cell cycle. In addition, we observe double-ring substructures suggestive of short-lived intermediates that may form upon initiation of septal cell wall synthesis. These data are integrated into a model describing the architecture and the remodeling of the Z-ring during the cell cycle of ovococci. IMPORTANCE The Gram-positive human pathogen S. pneumoniae is responsible for 1.6 million deaths per year worldwide and is increasingly resistant to various antibiotics. FtsZ is a cytoskeletal protein polymerizing at midcell into a ring-like structure called the Z-ring. FtsZ is a promising new antimicrobial target, as its inhibition leads to cell death. A precise view of the Z-ring architecture in vivo is essential to understand the mode of action of inhibitory drugs (see T. den Blaauwen, J. M. Andreu, and O. Monasterio, Bioorg Chem 55:27–38, 2014, doi:10.1016/j.bioorg.2014.03.007, for a review on FtsZ inhibitors). This is notably true in ovococcoid bacteria like S. pneumoniae, in which FtsZ is the only known cytoskeletal protein. We have used superresolution microscopy to obtain molecular details of the pneumococcus Z-ring that have so far been inaccessible with conventional microscopy. This study provides a nanoscale description of the Z-ring architecture and remodeling during the division of ovococci. The Gram-positive human pathogen S. pneumoniae is responsible for 1.6 million deaths per year worldwide and is increasingly resistant to various antibiotics. FtsZ is a cytoskeletal protein polymerizing at midcell into a ring-like structure called the Z-ring. FtsZ is a promising new antimicrobial target, as its inhibition leads to cell death. A precise view of the Z-ring architecture in vivo is essential to understand the mode of action of inhibitory drugs (see T. den Blaauwen, J. M. Andreu, and O. Monasterio, Bioorg Chem 55:27–38, 2014, doi:10.1016/j.bioorg.2014.03.007, for a review on FtsZ inhibitors). This is notably true in ovococcoid bacteria like S. pneumoniae, in which FtsZ is the only known cytoskeletal protein. We have used superresolution microscopy to obtain molecular details of the pneumococcus Z-ring that have so far been inaccessible with conventional microscopy. This study provides a nanoscale description of the Z-ring architecture and remodeling during the division of ovococci.


Molecular Microbiology | 2013

Structure-function analysis of the LytM domain of EnvC, an activator of cell wall remodelling at the Escherichia coli division site.

Nick T. Peters; Cécile Morlot; Desirée C. Yang; Tsuyoshi Uehara; Thierry Vernet; Thomas G. Bernhardt

Proteins with LytM (Peptidase_M23) domains are broadly distributed in bacteria and have been implicated in a variety of important processes, including cell division and cell‐shape determination. Most LytM‐like proteins that have been structurally and/or biochemically characterized are metallo‐endopeptidases that cleave cross‐links in the peptidoglycan (PG) cell wall matrix. Notable exceptions are the Escherichia coli cell division proteins EnvC and NlpD. These LytM factors are not hydrolases themselves, but instead serve as activators that stimulate PG cleavage by target enzymes called amidases to promote cell separation. Here we report the structure of the LytM domain from EnvC, the first structure of a LytM factor implicated in the regulation of PG hydrolysis. As expected, the fold is highly similar to that of other LytM proteins. However, consistent with its role as a regulator, the active‐site region is degenerate and lacks a catalytic metal ion. Importantly, genetic analysis indicates that residues in and around this degenerate active site are critical for amidase activation in vivo and in vitro. Thus, in the regulatory LytM factors, the apparent substrate binding pocket conserved in active metallo‐endopeptidases has been adapted to control PG hydrolysis by another set of enzymes.

Collaboration


Dive into the Cécile Morlot's collaboration.

Top Co-Authors

Avatar

Thierry Vernet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

André Zapun

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Carlos Contreras-Martel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Maxime Jacq

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Otto Dideberg

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Marie Di Guilmi

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Marjolaine Noirclerc-Savoye

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yves V. Brun

Indiana University Bloomington

View shared research outputs
Researchain Logo
Decentralizing Knowledge