Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cécile Notarnicola is active.

Publication


Featured researches published by Cécile Notarnicola.


Journal of Cellular and Molecular Medicine | 2011

Aldehyde dehydrogenase activity promotes survival of human muscle precursor cells.

Elise Jean; Dalila Laoudj-Chenivesse; Cécile Notarnicola; Karl Rouger; Nicolas Serratrice; Anne Bonnieu; Francis Bacou; Cédric Duret; Gilles Carnac

Aldehyde dehydrogenases (ALDH) are a family of enzymes that efficiently detoxify aldehydic products generated by reactive oxygen species and might therefore participate in cell survival. Because ALDH activity has been used to identify normal and malignant cells with stem cell properties, we asked whether human myogenic precursor cells (myoblasts) could be identified and isolated based on their levels of ALDH activity. Human muscle explant‐derived cells were incubated with ALDEFLUOR, a fluorescent substrate for ALDH, and we determined by flow cytometry the level of enzyme activity. We found that ALDH activity positively correlated with the myoblast‐CD56+ fraction in those cells, but, we also observed heterogeneity of ALDH activity levels within CD56‐purified myoblasts. Using lentiviral mediated expression of shRNA we demonstrated that ALDH activity was associated with expression of Aldh1a1 protein. Surprisingly, ALDH activity and Aldh1a1 expression levels were very low in mouse, rat, rabbit and non‐human primate myoblasts. Using different approaches, from pharmacological inhibition of ALDH activity by diethylaminobenzaldehyde, an inhibitor of class I ALDH, to cell fractionation by flow cytometry using the ALDEFLUOR assay, we characterized human myoblasts expressing low or high levels of ALDH. We correlated high ALDH activity ex vivo to resistance to hydrogen peroxide (H2O2)‐induced cytotoxic effect and in vivo to improved cell viability when human myoblasts were transplanted into host muscle of immune deficient scid mice. Therefore detection of ALDH activity, as a purification strategy, could allow non‐toxic and efficient isolation of a fraction of human myoblasts resistant to cytotoxic damage.


Gastroenterology | 2012

The RNA-Binding Protein RBPMS2 Regulates Development of Gastrointestinal Smooth Muscle

Cécile Notarnicola; Caroline Rouleau; Ludovic Le Guen; Anne Virsolvy; Sylvain Richard; Sandrine Faure; Pascal de Santa Barbara

BACKGROUND & AIMS Gastrointestinal development requires regulated differentiation of visceral smooth muscle cells (SMCs) and their contractile activities; alterations in these processes might lead to gastrointestinal neuromuscular disorders. Gastrointestinal SMC development and remodeling involves post-transcriptional modification of messenger RNA. We investigated the function of the RNA-binding protein for multiple splicing 2 (RBPMS2) during normal development of visceral smooth muscle in chicken and expression of its transcript in human pathophysiological conditions. METHODS We used avian replication-competent retroviral misexpression approaches to analyze the function of RBPMS2 in vivo and in primary cultures of chicken SMCs. We analyzed levels of RBPMS2 transcripts in colon samples from pediatric patients with Hirschsprungs disease and patients with chronic pseudo obstruction syndrome (CIPO) with megacystis. RESULTS RBPMS2 was expressed strongly during the early stage of visceral SMC development and quickly down-regulated in differentiated and mature SMCs. Misexpression of RBPMS2 in differentiated visceral SMCs induced their dedifferentiation and reduced their contractility by up-regulating expression of Noggin, which reduced activity of bone morphogenetic protein. Visceral smooth muscles from pediatric patients with CIPO expressed high levels of RBPMS2 transcripts, compared with smooth muscle from patients without this disorder. CONCLUSIONS Expression of RBPMS2 is present in visceral SMC precursors. Sustained expression of RBPMS2 inhibits the expression of markers of SMC differentiation by inhibiting bone morphogenetic protein activity, and stimulates SMC proliferation. RBPMS2 transcripts are up-regulated in patients with CIPO; alterations in RBPMS2 function might be involved in digestive motility disorders, particularly those characterized by the presence of muscular lesions (visceral myopathies).


PLOS ONE | 2008

Biochemical Properties of Gastrokine-1 Purified from Chicken Gizzard Smooth Muscle

Karim Hnia; Cécile Notarnicola; Pascal de Santa Barbara; Gérald Hugon; François Rivier; Dalila Laoudj-Chenivesse; Dominique Mornet

The potential role and function of gastrokine-1 (GNK1) in smooth muscle cells is investigated in this work by first establishing a preparative protocol to obtain this native protein from freshly dissected chicken gizzard. Some unexpected biochemical properties of gastrokine-1 were deduced by producing specific polyclonal antibody against the purified protein. We focused on the F-actin interaction with gastrokine-1 and the potential role and function in smooth muscle contractile properties. Background GNK1 is thought to provide mucosal protection in the superficial gastric epithelium. However, the actual role of gastrokine-1 with regards to its known decreased expression in gastric cancer is still unknown. Recently, trefoil factors (TFF) were reported to have important roles in gastric epithelial regeneration and cell turnover, and could be involved in GNK1 interactions. The aim of this study was to evaluate the role and function of GNK1 in smooth muscle cells. Methodology/Principal Findings From fresh chicken gizzard smooth muscle, an original purification procedure was used to purify a heat soluble 20 kDa protein that was sequenced and found to correspond to the gastrokine-1 protein sequence containing one BRICHOS domain and at least two or possibly three transmembrane regions. The purified protein was used to produce polyclonal antibody and highlighted the smooth muscle cell distribution and F-actin association of GNK1 through a few different methods. Conclusion/Significance Altogether our data illustrate a broader distribution of gastrokine-1 in smooth muscle than only in the gastrointestinal epithelium, and the specific interaction with F-actin highlights and suggests a new role and function of GNK1 within smooth muscle cells. A potential role via TFF interaction in cell-cell adhesion and assembly of actin stress fibres is discussed.


Experimental and Molecular Pathology | 2013

High expression of the RNA-binding protein RBPMS2 in gastrointestinal stromal tumors.

Ilona Hapkova; Josef Skarda; Caroline Rouleau; An Thys; Cécile Notarnicola; Maria Janikova; Florence Bernex; Miroslav Rypka; Jean-Marie Vanderwinden; Sandrine Faure; Jaroslav Vesely; Pascal de Santa Barbara

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract and are often associated with KIT or PDGFRA gene mutations. GIST cells might arise from the interstitial cells of Cajal (ICCs) or from a mesenchymal precursor that is common to ICCs and smooth muscle cells (SMCs). Here, we analyzed the mRNA and protein expression of RNA-Binding Protein with Multiple Splicing-2 (RBPMS2), an early marker of gastrointestinal SMC precursors, in human GISTs (n=23) by in situ hybridization, quantitative RT-PCR analysis and immunohistochemistry. The mean RBPMS2 mRNA level in GISTs was 42-fold higher than in control gastrointestinal samples (p<0.001). RBPMS2 expression was not correlated with KIT and PDGFRA expression levels, but was higher in GISTs harboring KIT mutations than in tumors with wild type KIT and PDGFRA or in GISTs with PDGFRA mutations that were characterized by the lowest RBPMS2 levels. Moreover, RBPMS2 levels were 64-fold higher in GIST samples with high risk of aggressive behavior than in adult control gastrointestinal samples and 6.2-fold higher in high risk than in low risk GIST specimens. RBPMS2 protein level was high in 87% of the studied GISTs independently of their histological classification. Finally, by inhibiting the KIT signaling pathway in GIST882 cells, we show that RBPMS2 expression is independent of KIT activation. In conclusion, RBPMS2 is up-regulated in GISTs compared to normal adult gastrointestinal tissues, indicating that RBPMS2 might represent a new diagnostic marker for GISTs and a potential target for cancer therapy.


Developmental Dynamics | 2008

Dynamic expression patterns of RhoV/Chp and RhoU/Wrch during chicken embryonic development

Cécile Notarnicola; Ludovic Le Guen; Philippe Fort; Sandrine Faure; Pascal de Santa Barbara

Rho GTPases play central roles in the control of cell adhesion and migration, cell cycle progression, growth, and differentiation. However, although most of our knowledge of Rho GTPase function comes from the study of the three classic Rho GTPases RhoA, Rac1, and Cdc42, recent studies have begun to explore the expression, regulation, and function of some of the lesser‐known members of the Rho GTPase family. In the present study, we cloned the avian orthologues of RhoV (or Chp for Cdc42 homologous protein) and RhoU (or Wrch‐1 for Wnt‐regulated Cdc42 homolog‐1) and examined their expression patterns by in situ hybridization analysis both during early chick embryogenesis and later on, during gastrointestinal tract development. Our data show that both GTPases are detected in the primitive streak, the somites, the neural crest cells, and the gastrointestinal tract with distinct territories and/or temporal expression windows. Although both proteins are 90% identical, our results indicate that cRhoV and cRhoU are distinctly expressed during chicken embryonic development. Developmental Dynamics 237:1165–1171, 2008.


Nucleic Acids Research | 2014

Homodimerization of RBPMS2 through a new RRM-interaction motif is necessary to control smooth muscle plasticity

Sébastien Sagnol; Yinshan Yang; Yannick Bessin; Frédéric Allemand; Ilona Hapkova; Cécile Notarnicola; Jean-François Guichou; Sandrine Faure; Gilles Labesse; Pascal de Santa Barbara

In vertebrates, smooth muscle cells (SMCs) can reversibly switch between contractile and proliferative phenotypes. This involves various molecular mechanisms to reactivate developmental signaling pathways and induce cell dedifferentiation. The protein RBPMS2 regulates early development and plasticity of digestive SMCs by inhibiting the bone morphogenetic protein pathway through its interaction with NOGGIN mRNA. RBPMS2 contains only one RNA recognition motif (RRM) while this motif is often repeated in tandem or associated with other functional domains in RRM-containing proteins. Herein, we show using an extensive combination of structure/function analyses that RBPMS2 homodimerizes through a particular sequence motif (D-x-K-x-R-E-L-Y-L-L-F: residues 39–51) located in its RRM domain. We also show that this specific motif is conserved among its homologs and paralogs in vertebrates and in its insect and worm orthologs (CPO and MEC-8, respectively) suggesting a conserved molecular mechanism of action. Inhibition of the dimerization process through targeting a conserved leucine inside of this motif abolishes the capacity of RBPMS2 to interact with the translational elongation eEF2 protein, to upregulate NOGGIN mRNA in vivo and to drive SMC dedifferentiation. Our study demonstrates that RBPMS2 possesses an RRM domain harboring both RNA-binding and protein-binding properties and that the newly identified RRM-homodimerization motif is crucial for the function of RBPMS2 at the cell and tissue levels.


Genes and Immunity | 2009

Characterization of new mutations in the 5'-flanking region of the familial Mediterranean fever gene.

Cécile Notarnicola; Brigitte Boizet-Bonhoure; P de Santa Barbara; Mike A. Osta; D Cattan; I Touitou

Familial Mediterranean fever (FMF) is a recessive autoinflammatory disease commonly found in the Mediterranean populations. Genetic diagnosis has developed since the discovery of the causative gene MEFV in 1997. As many patients could not be confirmed genetically by routine exon screening, we searched for mutations in the 5′-flanking region of this gene. Using denaturing gradient gel electrophoresis, we screened DNA from 108 patients with clinical FMF and 91 asymptomatic individuals. We found six novel sequence variants in a region extending −825 bp upstream of the first translated codon. To investigate the potential role of these variants in altering MEFV gene expression, we first characterized the MEFV promoter. Promoter mapping assays revealed that the region located between nucleotides −949 and −152 of the initiation codon was important for regulating expression of the gene. We identified a putative enhancer element between −571 and −414. Investigation of the sequence variants found in two patients demonstrated that c.−614C>G resulted in a 70% decrease in promoter activity, whereas c.−382C>T induced a 100% increase in activity, when compared to the wild type. We observed specific DNA-protein binding to both wild-type sites, suggesting that transcription factors may bind to these sequences to modulate MEFV expression.


Biochimica et Biophysica Acta | 2017

ER stress disturbs SR/ER-mitochondria Ca2 + transfer: Implications in Duchenne muscular dystrophy

Marion Pauly; Claire Angebault-Prouteau; Haikel Dridi; Cécile Notarnicola; Valérie Scheuermann; Alain Lacampagne; Stefan Matecki; Jérémy Fauconnier

Besides its role in calcium (Ca2+) homeostasis, the sarco-endoplamic reticulum (SR/ER) controls protein folding and is tethered to mitochondria. Under pathophysiological conditions the unfolded protein response (UPR) is associated with disturbance in SR/ER-mitochondria crosstalk. Here, we investigated whether ER stress altered SR/ER-mitochondria links, Ca2+ handling and muscle damage in WT (Wild Type) and mdx mice, the murine model of Duchenne Muscular Dystrophy (DMD). In WT mice, the SR/ER-mitochondria links were decreased in isolated FDB muscle fibers after injection of ER stress activator tunicamycin (TM). Ca2+ imaging revealed an increase of cytosolic Ca2+ transient and a decrease of mitochondrial Ca2+ uptake. The force generating capacity of muscle dropped after TM. This impaired contractile function was accompanied by an increase in autophagy markers and calpain-1 activation. Conversely, ER stress inhibitors restored SR/ER-mitochondria links, mitochondrial Ca2+ uptake and improved diaphragm contractility in mdx mice. Our findings demonstrated that ER stress-altered SR/ER-mitochondria links, disturbed Ca2+ handling and muscle function in WT and mdx mice. Thus, ER stress may open up a prospect of new therapeutic targets in DMD.


Cellular and Molecular Life Sciences | 2017

Retinoic acid maintains human skeletal muscle progenitor cells in an immature state

Marina El Haddad; Cécile Notarnicola; Brendan Evano; Nour El Khatib; Marine Blaquière; Anne Bonnieu; Shahragim Tajbakhsh; Gérald Hugon; Barbara Vernus; Jacques Mercier; Gilles Carnac

Muscle satellite cells are resistant to cytotoxic agents, and they express several genes that confer resistance to stress, thus allowing efficient dystrophic muscle regeneration after transplantation. However, once they are activated, this capacity to resist to aggressive agents is diminished resulting in massive death of transplanted cells. Although cell immaturity represents a survival advantage, the signalling pathways involved in the control of the immature state remain to be explored. Here, we show that incubation of human myoblasts with retinoic acid impairs skeletal muscle differentiation through activation of the retinoic-acid receptor family of nuclear receptor. Conversely, pharmacologic or genetic inactivation of endogenous retinoic-acid receptors improved myoblast differentiation. Retinoic acid inhibits the expression of early and late muscle differentiation markers and enhances the expression of myogenic specification genes, such as PAX7 and PAX3. These results suggest that the retinoic-acid-signalling pathway might maintain myoblasts in an undifferentiated/immature stage. To determine the relevance of these observations, we characterised the retinoic-acid-signalling pathways in freshly isolated satellite cells in mice and in siMYOD immature human myoblasts. Our analysis reveals that the immature state of muscle progenitors is correlated with high expression of several genes of the retinoic-acid-signalling pathway both in mice and in human. Taken together, our data provide evidences for an important role of the retinoic-acid-signalling pathway in the regulation of the immature state of muscle progenitors.


Scientific Reports | 2018

Combination of nutritional polyphenols supplementation with exercise training counteracts insulin resistance and improves endurance in high-fat diet-induced obese rats

Karen Lambert; Marie Hokayem; Claire Thomas; Odile Fabre; Cécile Cassan; Annick Bourret; Florence Bernex; Christine Feuillet-Coudray; Cécile Notarnicola; Jacques Mercier; A. Avignon; Catherine Bisbal

Separately, polyphenols and exercise are known to prevent insulin resistance (IR) but their combined curative effects on established obesity and IR require further investigation. Therefore, we compared the metabolic effects of a combination of exercise and grape polyphenols supplementation in obese IR rats with high-fat diet (EXOPP) to the effect of high-fat diet alone (HF) or with a nutritional supplementation of grape polyphenols (PP) or with endurance exercise (EXO) during 8 wks. We observed an improvement of systemic and skeletal muscle insulin sensitivity in EXO and EXOPP rats. EXOPP rats compared to HF rats presented a lower insulinemia and HOMA-IR with higher liver and muscle glycogen contents. Interestingly, EXOPP rats had a 68% enhanced endurance capacity compared to EXO rats with also a higher activation of AMPK compared to sedentary and EXO rats with increased lipid oxidation. Together, our results suggest that grape polyphenols supplementation combined with exercise has a synergistic effect by increasing muscle lipid oxidation and sparing glycogen utilization which thus enhances endurance capacity. Our data highlight that in cases of established obesity and IR, the combination of nutritional grape polyphenols supplementation and exercise heighten and intensify their individual metabolic effects.

Collaboration


Dive into the Cécile Notarnicola's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandrine Faure

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Anne Bonnieu

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Florence Bernex

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Gilles Carnac

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Gérald Hugon

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Ilona Hapkova

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Jacques Mercier

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Ludovic Le Guen

University of Montpellier

View shared research outputs
Researchain Logo
Decentralizing Knowledge