Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cecilia Evangelisti is active.

Publication


Featured researches published by Cecilia Evangelisti.


Leukemia | 2011

Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy

Linda S. Steelman; Richard A. Franklin; Steve L. Abrams; William H. Chappell; C. R. Kempf; Jörg Bäsecke; Franca Stivala; Marco Donia; Paolo Fagone; Ferdinando Nicoletti; Massimo Libra; Peter P. Ruvolo; Vivian Ruvolo; Cecilia Evangelisti; A M Martelli; James A. McCubrey

The Ras/Raf/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway is often implicated in sensitivity and resistance to leukemia therapy. Dysregulated signaling through the Ras/Raf/MEK/ERK pathway is often the result of genetic alterations in critical components in this pathway as well as mutations at upstream growth factor receptors. Unrestricted leukemia proliferation and decreased sensitivity to apoptotic-inducing agents and chemoresistance are typically associated with activation of pro-survival pathways. Mutations in this pathway and upstream signaling molecules can alter sensitivity to small molecule inhibitors targeting components of this cascade as well as to inhibitors targeting other key pathways (for example, phosphatidylinositol 3 kinase (PI3K)/phosphatase and tensin homologue deleted on chromosome 10 (PTEN)/Akt/mammalian target of rapamycin (mTOR)) activated in leukemia. Similarly, PI3K mutations can result in resistance to inhibitors targeting the Ras/Raf/MEK/ERK pathway, indicating important interaction points between the pathways (cross-talk). Furthermore, the Ras/Raf/MEK/ERK pathway can be activated by chemotherapeutic drugs commonly used in leukemia therapy. This review discusses the mechanisms by which abnormal expression of the Ras/Raf/MEK/ERK pathway can contribute to drug resistance as well as resistance to targeted leukemia therapy. Controlling the expression of this pathway could improve leukemia therapy and ameliorate human health.


Leukemia | 2011

Targeting the translational apparatus to improve leukemia therapy: roles of the PI3K/PTEN/Akt/mTOR pathway

A M Martelli; Cecilia Evangelisti; William H. Chappell; Steve L. Abrams; Jörg Bäsecke; Franca Stivala; Marco Donia; Paolo Fagone; Ferdinando Nicoletti; Massimo Libra; Vivian Ruvolo; Peter P. Ruvolo; C. R. Kempf; Linda S. Steelman; James A. McCubrey

It has become apparent that regulation of protein translation is an important determinant in controlling cell growth and leukemic transformation. The phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homologue deleted on chromosome ten (PTEN)/Akt/mammalian target of rapamycin (mTOR) pathway is often implicated in sensitivity and resistance to therapy. Dysregulated signaling through the PI3K/PTEN/Akt/mTOR pathway is often the result of genetic alterations in critical components in this pathway as well as mutations at upstream growth factor receptors. Furthermore, this pathway is activated by autocrine transformation mechanisms. PTEN is a critical tumor suppressor gene and its dysregulation results in the activation of Akt. PTEN is often mutated, silenced and is often haploinsufficient. The mTOR complex1 (mTORC1) regulates the assembly of the eukaryotic initiation factor4F complex, which is critical for the translation of mRNAs that are important for cell growth, prevention of apoptosis and transformation. These mRNAs have long 5′-untranslated regions that are G+C rich, rendering them difficult to translate. Elevated mTORC1 activity promotes the translation of these mRNAs via the phosphorylation of 4E-BP1. mTORC1 is a target of rapamycin and novel active-site inhibitors that directly target the TOR kinase activity. Although rapamycin and novel rapalogs are usually cytostatic and not cytotoxic for leukemic cells, novel inhibitors that target the kinase activities of PI3K and mTOR may prove more effective for leukemia therapy.


Leukemia | 2011

Roles of the RassRafsMEKsERK pathway in leukemia therapy

Linda S. Steelman; Richard A. Franklin; Steve L. Abrams; William H. Chappell; C. R. Kempf; Jörg Bäsecke; Franca Stivala; Marco Donia; Paolo Fagone; Ferdinando Nicoletti; Massimo Libra; Peter P. Ruvolo; Vivian Ruvolo; Cecilia Evangelisti; A M Martelli; James A. McCubrey

The Ras/Raf/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway is often implicated in sensitivity and resistance to leukemia therapy. Dysregulated signaling through the Ras/Raf/MEK/ERK pathway is often the result of genetic alterations in critical components in this pathway as well as mutations at upstream growth factor receptors. Unrestricted leukemia proliferation and decreased sensitivity to apoptotic-inducing agents and chemoresistance are typically associated with activation of pro-survival pathways. Mutations in this pathway and upstream signaling molecules can alter sensitivity to small molecule inhibitors targeting components of this cascade as well as to inhibitors targeting other key pathways (for example, phosphatidylinositol 3 kinase (PI3K)/phosphatase and tensin homologue deleted on chromosome 10 (PTEN)/Akt/mammalian target of rapamycin (mTOR)) activated in leukemia. Similarly, PI3K mutations can result in resistance to inhibitors targeting the Ras/Raf/MEK/ERK pathway, indicating important interaction points between the pathways (cross-talk). Furthermore, the Ras/Raf/MEK/ERK pathway can be activated by chemotherapeutic drugs commonly used in leukemia therapy. This review discusses the mechanisms by which abnormal expression of the Ras/Raf/MEK/ERK pathway can contribute to drug resistance as well as resistance to targeted leukemia therapy. Controlling the expression of this pathway could improve leukemia therapy and ameliorate human health.


Leukemia | 2008

Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor perifosine in acute myelogenous leukemia cells

Veronica Papa; P L Tazzari; Francesca Chiarini; Alessandra Cappellini; Francesca Ricci; Anna Maria Billi; Cecilia Evangelisti; Emanuela Ottaviani; G Martinelli; Nicoletta Testoni; James A. McCubrey; A M Martelli

The serine/threonine kinase Akt, a downstream effector of phosphatidylinositol 3-kinase (PI3K), is known to play an important role in antiapoptotic signaling and has been implicated in the aggressiveness of a number of different human cancers including acute myelogenous leukemia (AML). We have investigated the therapeutic potential of the novel Akt inhibitor, perifosine, on human AML cells. Perifosine is a synthetic alkylphospholipid, a new class of antitumor agents, which target plasma membrane and inhibit signal transduction networks. Perifosine was tested on THP-1 and MV 4-11 cell lines, as well as primary leukemia cells. Perifosine treatment induced cell death by apoptosis in AML cell lines. Perifosine caused Akt and ERK 1/2 dephosphorylation as well as caspase activation. In THP-1 cells, the proapoptotic effect of perifosine was partly dependent on the Fas/FasL system and c-jun-N-kinase activation. In MV 4–11 cells, perifosine downregulated phosphorylated Akt, but not phosphorylated FLT3. Moreover, perifosine reduced the clonogenic activity of AML, but not normal, CD34+ cells, and markedly increased blast cell sensitivity to etoposide. Our findings indicate that perifosine, either alone or in combination with existing drugs, might be a promising therapeutic agent for the treatment of those AML cases characterized by upregulation of the PI3K–Akt survival pathway.


Leukemia | 2011

Targeted inhibition of mTORC1 and mTORC2 by active-site mTOR inhibitors has cytotoxic effects in T-cell acute lymphoblastic leukemia

Cecilia Evangelisti; Francesca Ricci; P L Tazzari; Giovanna Tabellini; Michela Battistelli; E Falcieri; Francesca Chiarini; Roberta Bortul; Fraia Melchionda; Pasqualepaolo Pagliaro; Andrea Pession; James A. McCubrey; A M Martelli

The mammalian Target Of Rapamycin (mTOR) serine/threonine kinase belongs to two multi-protein complexes, referred to as mTORC1 and mTORC2. mTOR-generated signals have critical roles in leukemic cell biology by controlling mRNA translation of genes that promote proliferation and survival. However, allosteric inhibition of mTORC1 by rapamycin has only modest effects in T-cell acute lymphoblastic leukemia (T-ALL). Recently, ATP-competitive inhibitors specific for the mTOR kinase active site have been developed. In this study, we have explored the therapeutic potential of active-site mTOR inhibitors against both T-ALL cell lines and primary samples from T-ALL patients displaying activation of mTORC1 and mTORC2. The inhibitors affected T-ALL cell viability by inducing cell-cycle arrest in G0/G1 phase, apoptosis and autophagy. Western blot analysis demonstrated a Ser 473 Akt dephosphorylation (indicative of mTORC2 inhibition) and a dephosphorylation of mTORC1 downstream targets. Unlike rapamycin, we found a marked inhibition of mRNA translation in T-ALL cell lines treated with active-site mTOR inhibitors. The inhibitors strongly synergized with both vincristine and the Bcl-2 inhibitor, ABT-263. Remarkably, the drugs targeted a putative leukemia-initiating cell sub-population (CD34+/CD7−/CD4−) in patient samples. In conclusion, the inhibitors displayed remarkable anti-leukemic activity, which emphasizes their future development as clinical candidates for therapy in T-ALL.


Advances in biological regulation | 2016

Role of sphingosine 1-phosphate receptors, sphingosine kinases and sphingosine in cancer and inflammation

Nigel J. Pyne; Melissa McNaughton; Stephanie D. Boomkamp; Neil MacRitchie; Cecilia Evangelisti; Alberto M. Martelli; Hui-Rong Jiang; Satvir Ubhi; Susan Pyne

Sphingosine kinase (there are two isoforms, SK1 and SK2) catalyses the formation of sphingosine 1-phosphate (S1P), a bioactive lipid that can be released from cells to activate a family of G protein-coupled receptors, termed S1P1-5. In addition, S1P can bind to intracellular target proteins, such as HDAC1/2, to induce cell responses. There is increasing evidence of a role for S1P receptors (e.g. S1P4) and SK1 in cancer, where high expression of these proteins in ER negative breast cancer patient tumours is linked with poor prognosis. Indeed, evidence will be presented here to demonstrate that S1P4 is functionally linked with SK1 and the oncogene HER2 (ErbB2) to regulate mitogen-activated protein kinase pathways and growth of breast cancer cells. Although much emphasis is placed on SK1 in terms of involvement in oncogenesis, evidence will also be presented for a role of SK2 in both T-cell and B-cell acute lymphoblastic leukemia. In patient T-ALL lymphoblasts and T-ALL cell lines, we have demonstrated that SK2 inhibitors promote T-ALL cell death via autophagy and induce suppression of c-myc and PI3K/AKT pathways. We will also present evidence demonstrating that certain SK inhibitors promote oxidative stress and protein turnover via proteasomal degradative pathways linked with induction of p53-and p21-induced growth arrest. In addition, the SK1 inhibitor, PF-543 exacerbates disease progression in an experimental autoimmune encephalomyelitis mouse model indicating that SK1 functions in an anti-inflammatory manner. Indeed, sphingosine, which accumulates upon inhibition of SK1 activity, and sphingosine-like compounds promote activation of the inflammasome, which is linked with multiple sclerosis, to stimulate formation of the pro-inflammatory mediator, IL-1β. Such compounds could be exploited to produce antagonists that diminish exaggerated inflammation in disease. The therapeutic potential of modifying the SK-S1P receptor pathway in cancer and inflammation will therefore, be reviewed.


Leukemia | 2012

Cytotoxic activity of the novel Akt inhibitor, MK-2206, in T-cell acute lymphoblastic leukemia.

Carolina Simioni; Luca M. Neri; Giovanna Tabellini; Francesca Ricci; Daniela Bressanin; Francesca Chiarini; Cecilia Evangelisti; Alice Cani; P L Tazzari; Fraia Melchionda; Pasqualepaolo Pagliaro; Andrea Pession; James A. McCubrey; Silvano Capitani; A M Martelli

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive neoplastic disorder arising from T-cell progenitors. T-ALL accounts for 15% of newly diagnosed ALL cases in children and 25% in adults. Although the prognosis of T-ALL has improved, due to the use of polychemotherapy schemes, the outcome of relapsed/chemoresistant T-ALL cases is still poor. A signaling pathway that is frequently upregulated in T-ALL, is the phosphatidylinositol 3-kinase/Akt/mTOR network. To explore whether Akt could represent a target for therapeutic intervention in T-ALL, we evaluated the effects of the novel allosteric Akt inhibitor, MK-2206, on a panel of human T-ALL cell lines and primary cells from T-ALL patients. MK-2206 decreased T-ALL cell line viability by blocking leukemic cells in the G0/G1 phase of the cell cycle and inducing apoptosis. MK-2206 also induced autophagy, as demonstrated by an increase in the 14-kDa form of LC3A/B. Western blotting analysis documented a concentration-dependent dephosphorylation of Akt and its downstream targets, GSK-3α/β and FOXO3A, in response to MK-2206. MK-2206 was cytotoxic to primary T-ALL cells and induced apoptosis in a T-ALL patient cell subset (CD34+/CD4−/CD7−), which is enriched in leukemia-initiating cells. Taken together, our findings indicate that Akt inhibition may represent a potential therapeutic strategy in T-ALL.


Haematologica | 2010

Indoleamine 2,3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells

Antonio Curti; Sara Trabanelli; Chiara Onofri; Michela Aluigi; Valentina Salvestrini; Darina Očadlíková; Cecilia Evangelisti; Sergio Rutella; Raimondo De Cristofaro; Emanuela Ottaviani; Michele Baccarani; Roberto M. Lemoli

Background The immunoregulatory enzyme indoleamine 2,3-dioxygenase, which catalyzes the conversion of tryptophan into kynurenine, is expressed in a significant subset of patients with acute myeloid leukemia, resulting in the inhibition of T-cell proliferation and the induction of regulatory T cells. Acute myeloid leukemia cells can be differentiated into dendritic cells, which have increased immunogenicity and have been proposed as vaccines against leukemia. Design and Methods Leukemic dendritic cells were generated from acute myeloid leukemia cells and used as stimulators in functional assays, including the induction of regulatory T cells. Indoleamine 2,3-dioxygenase expression in leukemic dendritic cells was evaluated at molecular, protein and enzymatic levels. Results We demonstrate that, after differentiation into dendritic cells, both indoleamine 2,3-dioxygenase-negative and indoleamine 2,3-dioxygenase-positive acute myeloid leukemia samples show induction and up-regulation of indoleamine 2,3-dioxygenase gene and protein, respectively. Indoleamine 2,3-dioxygenase-positive acute myeloid leukemia dendritic cells catabolize tryptophan into kynurenine metabolite and inhibit T-cell proliferation through an indoleamine 2,3-dioxygenase-dependent mechanism. Moreover, indoleamine 2,3-dioxygenase-positive leukemic dendritic cells increase the number of allogeneic and autologous CD4+CD25+ Foxp3+ T cells and this effect is completely abrogated by the indoleamine 2,3-dioxygenase-inhibitor, 1-methyl tryptophan. Purified CD4+CD25+ T cells obtained from co-culture with indoleamine 2,3-dioxygenase-positive leukemic dendritic cells act as regulatory T cells as they inhibit naive T-cell proliferation and impair the complete maturation of normal dendritic cells. Importantly, leukemic dendritic cell-induced regulatory T cells are capable of in vitro suppression of a leukemia-specific T cell-mediated immune response, directed against the leukemia-associated antigen, Wilms’ tumor protein. Conclusions These data identify indoleamine 2,3-dioxygenase-mediated catabolism as a tolerogenic mechanism exerted by leukemic dendritic cells and have clinical implications for the use of these cells for active immunotherapy of leukemia.


Leukemia | 2014

Cytotoxic activity of the casein kinase 2 inhibitor CX-4945 against T-cell acute lymphoblastic leukemia: targeting the unfolded protein response signaling.

Francesca Buontempo; Ester Orsini; Leila R. Martins; I Antunes; Annalisa Lonetti; Francesca Chiarini; Giovanna Tabellini; Cecilia Evangelisti; Fraia Melchionda; Andrea Pession; Alice Bertaina; F Locatelli; James A. McCubrey; Alessandra Cappellini; João T. Barata; A M Martelli

Constitutively active casein kinase 2 (CK2) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL). CK2 phosphorylates PTEN (phosphatase and tensin homolog) tumor suppressor, resulting in PTEN stabilization and functional inactivation. Downregulation of PTEN activity has an impact on PI3K/Akt/mTOR signaling, which is of fundamental importance for T-ALL cell survival. These observations lend compelling weight to the application of CK2 inhibitors in the therapy of T-ALL. Here, we have analyzed the therapeutic potential of CX-4945—a novel, highly specific, orally available, ATP-competitive inhibitor of CK2α. We show that CX-4945 treatment induced apoptosis in T-ALL cell lines and patient T lymphoblasts. CX-4945 downregulated PI3K/Akt/mTOR signaling in leukemic cells. Notably, CX-4945 affected the unfolded protein response (UPR), as demonstrated by a significant decrease in the levels of the main UPR regulator GRP78/BIP, and led to apoptosis via upregulation of the ER stress/UPR cell death mediators IRE1α and CHOP. In vivo administration of CX-4945 to a subcutaneous xenotransplant model of human T-ALL significantly delayed tumor growth. Our findings indicate that modulation of the ER stress/UPR signaling through CK2 inhibition could be exploited for inducing apoptosis in T-ALL cells and that CX-4945 may be an efficient treatment for those T-ALLs displaying upregulation of CK2α/PI3K/Akt/mTOR signaling.


British Journal of Cancer | 2006

Novel germline variants identified in the inner mitochondrial membrane transporter TIMM44 and their role in predisposition to oncocytic thyroid carcinomas.

Elena Bonora; Cecilia Evangelisti; Françoise Bonichon; Giovanni Tallini; Giovanni Romeo

Familial Non-Medullary Thyroid Carcinoma (fNMTC) represents 3–7% of all thyroid tumours and is associated with some of the highest familial risks among all cancers, with an inheritance pattern compatible with an autosomal dominant model with reduced penetrance. We previously mapped a predisposing locus, TCO (Thyroid tumour with Cell Oxyphilia) on chromosome 19p13.2, for a particular form of thyroid tumour characterised by cells with an abnormal proliferation of mitochondria (oxyphilic or oncocytic cells). In the present work, we report the systematic screening of 14 candidate genes mapping to the region of linkage in affected TCO members, that led us to identify two novel variants respectively in exon 9 and exon 13 of TIMM44, a mitochondrial inner membrane translocase for the import in the mitochondria of nuclear-encoded proteins. These variants were co-segregating with the TCO phenotype, were not present in a large group of controls and were predicted to negatively affect the protein (exon 9 change) or the transcript (exon 13 change). Functional analysis was performed in vitro for both changes and although no dramatic loss of function effects were identified for the mutant alleles, subtler effects might still be present that could alter Timm44 function and thus promote oncocytic tumour development. Thus we suggest that TIMM44 should be considered for further studies in independent samples of affected individuals with TCO.

Collaboration


Dive into the Cecilia Evangelisti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge