Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cecilia Giunta is active.

Publication


Featured researches published by Cecilia Giunta.


American Journal of Human Genetics | 2011

Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta.

Jutta Becker; Oliver Semler; Christian Gilissen; Yun Li; Hanno J. Bolz; Cecilia Giunta; Carsten Bergmann; Marianne Rohrbach; Friederike Koerber; Katharina Zimmermann; Petra de Vries; Brunhilde Wirth; Eckhard Schoenau; Bernd Wollnik; Joris A. Veltman; Alexander Hoischen; Christian Netzer

Osteogenesis imperfecta (OI) is a heterogeneous genetic disorder characterized by bone fragility and susceptibility to fractures after minimal trauma. After mutations in all known OI genes had been excluded by Sanger sequencing, we applied next-generation sequencing to analyze the exome of a single individual who has a severe form of the disease and whose parents are second cousins. A total of 26,922 variations from the human reference genome sequence were subjected to several filtering steps. In addition, we extracted the genotypes of all dbSNP130-annotated SNPs from the exome sequencing data and used these 299,494 genotypes as markers for the genome-wide identification of homozygous regions. A single homozygous truncating mutation, affecting SERPINF1 on chromosome 17p13.3, that was embedded into a homozygous stretch of 2.99 Mb remained. The mutation was also homozygous in the affected brother of the index patient. Subsequently, we identified homozygosity for two different truncating SERPINF1 mutations in two unrelated patients with OI and parental consanguinity. All four individuals with SERPINF1 mutations have severe OI. Fractures of long bones and severe vertebral compression fractures with resulting deformities were observed as early as the first year of life in these individuals. Collagen analyses with cultured dermal fibroblasts displayed no evidence for impaired collagen folding, posttranslational modification, or secretion. SERPINF1 encodes pigment epithelium-derived factor (PEDF), a secreted glycoprotein of the serpin superfamily. PEDF is a multifunctional protein and one of the strongest inhibitors of angiogenesis currently known in humans. Our data provide genetic evidence for PEDF involvement in human bone homeostasis.


Human Mutation | 2012

Identification of a Mutation Causing Deficient BMP1/mTLD Proteolytic Activity in Autosomal Recessive Osteogenesis Imperfecta

Víctor Martínez-Glez; María Valencia; José A. Caparrós-Martín; Mona Aglan; Samia A. Temtamy; Jair Tenorio; Veronica Pulido; Uschi Lindert; Marianne Rohrbach; David R. Eyre; Cecilia Giunta; Pablo Lapunzina; Victor L. Ruiz-Perez

Herein, we have studied a consanguineous Egyptian family with two children diagnosed with severe autosomal recessive osteogenesis imperfecta (AR‐OI) and a large umbilical hernia. Homozygosity mapping in this family showed lack of linkage to any of the previously known AR‐OI genes, but revealed a 10.27 MB homozygous region on chromosome 8p in the two affected sibs, which comprised the procollagen I C‐terminal propeptide (PICP) endopeptidase gene BMP1. Mutation analysis identified both patients with a Phe249Leu homozygous missense change within the BMP1 protease domain involving a residue, which is conserved in all members of the astacin group of metalloproteases. Type I procollagen analysis in supernatants from cultured fibroblasts demonstrated abnormal PICP processing in patient‐derived cells consistent with the mutation causing decreased BMP1 function. This was further confirmed by overexpressing wild type and mutant BMP1 longer isoform (mammalian Tolloid protein [mTLD]) in NIH3T3 fibroblasts and human primary fibroblasts. While overproduction of normal mTLD resulted in a large proportion of proα1(I) in the culture media being C‐terminally processed, proα1(I) cleavage was not enhanced by an excess of the mutant protein, proving that the Phe249Leu mutation leads to a BMP1/mTLD protein with deficient PICP proteolytic activity. We conclude that BMP1 is an additional gene mutated in AR‐OI. Hum Mutat 33:343–350, 2012.


American Journal of Human Genetics | 2000

COL5A1 Haploinsufficiency Is a Common Molecular Mechanism Underlying the Classical Form of EDS

Richard J. Wenstrup; Jane B. Florer; Marcia C. Willing; Cecilia Giunta; Beat Steinmann; Felix Young; Miki Susic; William G. Cole

We have identified haploinsufficiency of the COL5A1 gene that encodes the proalpha1(V) chain of type V collagen in the classical form of the Ehlers-Danlos syndrome (EDS), a heritable connective-tissue disorder that severely alters the collagen-fibrillar structure of the dermis, joints, eyes, and blood vessels. Eight of 28 probands with classical EDS who were heterozygous for expressed polymorphisms in COL5A1 showed complete or nearly complete loss of expression of one COL5A1 allele. Reduced levels of proalpha1(V) mRNA relative to the levels of another type V collagen mRNA, proalpha2(V), were also observed in the cultured fibroblasts from EDS probands. Products of the two COL5A1 alleles were approximately equal after the addition of cycloheximide to the fibroblast cultures. After harvesting of mRNAs from cycloheximide-treated cultured fibroblasts, heteroduplex analysis of overlapping reverse transcriptase-PCR segments spanning the complete proalpha1(V) cDNA showed anomalies in four of the eight probands that led to identification of causative mutations, and, in the remaining four probands, targeting of CGA-->TGA mutations in genomic DNA revealed a premature stop at codon in one of them. We estimate that approximately one-third of individuals with classical EDS have mutations of COL5A1 that result in haploinsufficiency. These findings indicate that the normal formation of the heterotypic collagen fibrils that contain types I, III, and V collagen requires the expression of both COL5A1 alleles.


American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2017

The 2017 international classification of the Ehlers-Danlos syndromes.

Fransiska Malfait; Clair A. Francomano; Peter H. Byers; John W. Belmont; Britta Berglund; James Black; Lara Bloom; Jessica M. Bowen; Angela F. Brady; Nigel Burrows; Marco Castori; Helen Cohen; Marina Colombi; Serwet Demirdas; Julie De Backer; Anne De Paepe; Sylvie Fournel-Gigleux; Michael Frank; Neeti Ghali; Cecilia Giunta; Rodney Grahame; Alan Hakim; Xavier Jeunemaitre; Diana Johnson; Birgit Juul-Kristensen; Ines Kapferer-Seebacher; Hanadi Kazkaz; Tomoki Kosho; Mark Lavallee; Howard P. Levy

The Ehlers–Danlos syndromes (EDS) are a clinically and genetically heterogeneous group of heritable connective tissue disorders (HCTDs) characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. Over the past two decades, the Villefranche Nosology, which delineated six subtypes, has been widely used as the standard for clinical diagnosis of EDS. For most of these subtypes, mutations had been identified in collagen‐encoding genes, or in genes encoding collagen‐modifying enzymes. Since its publication in 1998, a whole spectrum of novel EDS subtypes has been described, and mutations have been identified in an array of novel genes. The International EDS Consortium proposes a revised EDS classification, which recognizes 13 subtypes. For each of the subtypes, we propose a set of clinical criteria that are suggestive for the diagnosis. However, in view of the vast genetic heterogeneity and phenotypic variability of the EDS subtypes, and the clinical overlap between EDS subtypes, but also with other HCTDs, the definite diagnosis of all EDS subtypes, except for the hypermobile type, relies on molecular confirmation with identification of (a) causative genetic variant(s). We also revised the clinical criteria for hypermobile EDS in order to allow for a better distinction from other joint hypermobility disorders. To satisfy research needs, we also propose a pathogenetic scheme, that regroups EDS subtypes for which the causative proteins function within the same pathway. We hope that the revised International EDS Classification will serve as a new standard for the diagnosis of EDS and will provide a framework for future research purposes.


American Journal of Human Genetics | 2012

Mutations in FKBP14 cause a variant of Ehlers-Danlos syndrome with progressive kyphoscoliosis, myopathy, and hearing loss.

Matthias Baumann; Cecilia Giunta; Birgit Krabichler; Franz Rüschendorf; Nicoletta Zoppi; Marina Colombi; Reginald E. Bittner; Susana Quijano-Roy; Francesco Muntoni; Sebahattin Cirak; Gudrun Schreiber; Y. Zou; Ying Hu; Norma B. Romero; Robert Yves Carlier; Albert Amberger; Andrea J. Deutschmann; Volker Straub; Marianne Rohrbach; Beat Steinmann; Kevin Rostasy; Daniela Karall; Carsten G. Bönnemann; Johannes Zschocke; Christine Fauth

We report on an autosomal-recessive variant of Ehlers-Danlos syndrome (EDS) characterized by severe muscle hypotonia at birth, progressive scoliosis, joint hypermobility, hyperelastic skin, myopathy, sensorineural hearing impairment, and normal pyridinoline excretion in urine. Clinically, the disorder shares many features with the kyphoscoliotic type of EDS (EDS VIA) and Ullrich congenital muscular dystrophy. Linkage analysis in a large Tyrolean kindred identified a homozygous frameshift mutation in FKBP14 in two affected individuals. Based on the cardinal clinical characteristics of the disorder, four additional individuals originating from different European countries were identified who carried either homozygous or compound heterozygous mutations in FKBP14. FKBP14 belongs to the family of FK506-binding peptidyl-prolyl cis-trans isomerases (PPIases). ER-resident FKBPs have been suggested to act as folding catalysts by accelerating cis-trans isomerization of peptidyl-prolyl bonds and to act occasionally also as chaperones. We demonstrate that FKBP14 is localized in the endoplasmic reticulum (ER) and that deficiency of FKBP14 leads to enlarged ER cisterns in dermal fibroblasts in vivo. Furthermore, indirect immunofluorescence of FKBP14-deficient fibroblasts indicated an altered assembly of the extracellular matrix in vitro. These findings suggest that a disturbance of protein folding in the ER affecting one or more components of the extracellular matrix might cause the generalized connective tissue involvement in this disorder. FKBP14 mutation analysis should be considered in all individuals with apparent kyphoscoliotic type of EDS and normal urinary pyridinoline excretion, in particular in conjunction with sensorineural hearing impairment.


American Journal of Human Genetics | 2011

Mutations in PRDM5 in Brittle Cornea Syndrome Identify a Pathway Regulating Extracellular Matrix Development and Maintenance

Emma Burkitt Wright; Helen L. Spencer; Sarah B. Daly; Forbes D.C. Manson; Leo Zeef; Jill Urquhart; Nicoletta Zoppi; Richard Bonshek; Ioannis Tosounidis; Meyyammai Mohan; Colm Madden; Annabel Dodds; Kate Chandler; Siddharth Banka; Leon Au; Jill Clayton-Smith; Naz Khan; Leslie G. Biesecker; Meredith Wilson; Marianne Rohrbach; Marina Colombi; Cecilia Giunta; Graeme C.M. Black

Extreme corneal fragility and thinning, which have a high risk of catastrophic spontaneous rupture, are the cardinal features of brittle cornea syndrome (BCS), an autosomal-recessive generalized connective tissue disorder. Enucleation is frequently the only management option for this condition, resulting in blindness and psychosocial distress. Even when the cornea remains grossly intact, visual function could also be impaired by a high degree of myopia and keratoconus. Deafness is another common feature and results in combined sensory deprivation. Using autozygosity mapping, we identified mutations in PRDM5 in families with BCS. We demonstrate that regulation of expression of extracellular matrix components, particularly fibrillar collagens, by PRDM5 is a key molecular mechanism that underlies corneal fragility in BCS and controls normal corneal development and maintenance. ZNF469, encoding a zinc finger protein of hitherto undefined function, has been identified as a quantitative trait locus for central corneal thickness, and mutations in this gene have been demonstrated in Tunisian Jewish and Palestinian kindreds with BCS. We show that ZNF469 and PRDM5, two genes that when mutated cause BCS, participate in the same regulatory pathway.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Promotion of vesicular zinc efflux by ZIP13 and its implications for spondylocheiro dysplastic Ehlers–Danlos syndrome

Jeeyon Jeong; Joel Walker; Fudi Wang; J. Genevieve Park; Amy E. Palmer; Cecilia Giunta; Marianne Rohrbach; Beat Steinmann; David J. Eide

Significance Intracellular zinc is tightly controlled because zinc is essential but potentially toxic. Many organisms regulate zinc using storage vesicles/organelles, but whether mammals do so is unknown. Here, we show that human ZIP13 releases zinc from vesicular stores. Previous studies found that mutations in the ZIP13 gene, SLC39A13, cause the spondylocheiro dysplastic form of Ehlers–Danlos syndrome (SCD-EDS) and speculated that ZIP13 exports zinc from the early secretory pathway and that zinc overload in the endoplasmic reticulum causes SCD-EDS. In contrast, our study suggests that SCD-EDS results from zinc deficiency in the endoplasmic reticulum resulting from zinc trapping in vesicular stores. Zinc is essential but potentially toxic, so intracellular zinc levels are tightly controlled. A key strategy used by many organisms to buffer cytosolic zinc is to store it within vesicles and organelles. It is yet unknown whether vesicular or organellar sites perform this function in mammals. Human ZIP13, a member of the Zrt/Irt-like protein (ZIP) metal transporter family, might provide an answer to this question. Mutations in the ZIP13 gene, SLC39A13, previously were found to cause the spondylocheiro dysplastic form of Ehlers–Danlos syndrome (SCD-EDS), a heritable connective tissue disorder. Those previous studies suggested that ZIP13 transports excess zinc out of the early secretory pathway and that zinc overload in the endoplasmic reticulum (ER) occurs in SCD-EDS patients. In contrast, this study indicates that ZIP13’s role is to release labile zinc from vesicular stores for use in the ER and other compartments. We propose that SCD-EDS is the result of vesicular zinc trapping and ER zinc deficiency rather than overload.


Journal of Bone and Joint Surgery, American Volume | 1999

Ehlers-Danlos Syndrome Type VII: Clinical Features and Molecular Defects*

Cecilia Giunta; Andrea Superti-Furga; Stephanie Spranger; William G. Cole; Beat Steinmann

We evaluated the clinical features, molecular defects, and problems associated with the management of two patients who had type-VII Ehlers-Danlos syndrome and reviewed the cases of eighteen patients with this condition who had been reported on previously. The typical clinical features associated with this syndrome include bilateral congenital dislocation of the hip; severe generalized hypermobility of the joints; multiple dislocations of joints other than the hip; muscular hypotonia; and hyperelasticity, fragility, and a doughy texture of the skin. Collagen and DNA analyses demonstrated that both of our patients had type-VIIB Ehlers-Danlos syndrome, which is caused by heterozygous new mutations of the COL1A2 gene that encodes the proalpha2(I) chain of type-I procollagen. The obligatory GT dinucleotide at the splice donor site of intron 6 was altered in both of our patients: one patient (Case 1) had an A substitution of the G nucleotide, and the other patient (Case 2) had a C substitution of the T nucleotide. Abnormal splicing resulted in the loss of the exon 6-encoded N-telopeptide, which includes the N-proteinase cleavage site. Despite multiple operative procedures, one of our patients, who was thirty-seven years old at the time of the most recent follow-up, continued to have persistent subluxation of the right hip and osteoarthritis of the left hip. Closed reduction of the dislocated hips, regardless of the type of immobilization used, was unsuccessful in all twenty patients. The results of open reduction were improved when capsulorrhaphy was combined with iliac or femoral osteotomy, or both.


American Journal of Medical Genetics Part A | 2005

Nevo Syndrome Is Allelic to the Kyphoscoliotic Type of the Ehlers-Danlos Syndrome (EDS VIA)

Cecilia Giunta; Ann Randolph; Lihadh Al-Gazali; Han G. Brunner; Marius E. Kraenzlin; Beat Steinmann

We report on seven patients affected with Nevo syndrome, a rare, autosomal recessive disorder characterized by increased perinatal length, kyphosis, muscular hypotonia, and joint laxity. Since its first description by Nevo et al. [ 1974 ], only a few cases have been reported. Because some of these patients present clinical features similar to those of the kyphoscoliotic type of Ehlers–Danlos syndrome (EDS VIA), an inherited connective tissue disorder characterized by a deficiency of lysyl hydroxylase due to mutations in PLOD1, we studied seven patients with Nevo syndrome, three of whom have previously been reported, and four of whom are new. In the five patients from whom urine was available, the ratio of total urinary lysyl pyridinoline (LP) to hydroxylysyl pyridinoline (HP) was elevated (8.2, 7.8, 8.6, 3.5, and 4.8, respectively) compared with that in controls (0.20 ± 0.05, range 0.10–0.38), and similar to that observed in patients with EDS VIA (5.97 ± 0.99, range 4.3–8.1). Six patients were homozygous for a point mutation in exon 9 of PLOD1 causing a p.R319X nonsense mutation, while one patient was homozygous for a large deletion comprising exon 17 of PLOD1. We conclude that the Nevo syndrome is allelic to and clinically indistinguishable from EDS VIA, and present evidence that increased length at birth and wristdrop, in addition to muscular hypotonia and kyphoscoliosis, should prompt the physician to consider EDS VIA earlier than heretofore.


Human Genetics | 2008

Apparent autosomal dominant keratoconus in a large Australian pedigree accounted for by digenic inheritance of two novel loci

Kathryn P. Burdon; Douglas John Coster; Jac Charlesworth; Richard Ad Mills; Kate J. Laurie; Cecilia Giunta; Alex W. Hewitt; Paul Latimer; Jamie E. Craig

Keratoconus is a debilitating ocular disease characterised by progressive asymmetrical thinning of the cornea, the clear covering at the front of the eye. The resulting protrusion of the cornea results in severe refractive error, in the most severe cases requiring corneal grafting. It is a complex disease with a genetic component. Despite several reports of linked loci, major gene identification has been elusive. A genome-wide linkage scan in a large Australian pedigree with apparent autosomal dominant keratoconus was conducted using the Affymetrix 10K SNP chip and two regions of linkage identified. Functional candidate genes from within both linkage peaks were assessed for corneal expression and screened for mutations in affected family members. Equal evidence of linkage was detected to both 1p36.23-36.21 and 8q13.1-q21.11 with LOD scores of 1.9. Analysis of both loci concurrently suggests digenic linkage with two-locus LOD score of 3.4. All affected individuals carry identical haplotypes at both loci. Carriers of either linked haplotype without the other do not have keratoconus. No mutations were identified in the following candidate genes expressed in the cornea: ENO1, CTNNBIP1, PLOD1, UBIAD1, SPSB1 or TCEB1. Although the pedigree appears to demonstrate simple autosomal dominant inheritance, the disorder is actually genetically complex. This pedigree may provide a link between inherited forms of keratoconus and sporadic cases.

Collaboration


Dive into the Cecilia Giunta's collaboration.

Top Co-Authors

Avatar

Marianne Rohrbach

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Beat Steinmann

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Uschi Lindert

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

David R. Eyre

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas R. Janecke

Innsbruck Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge