Cecilia Gotor
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cecilia Gotor.
Journal of Biological Chemistry | 2001
José R. Domínguez-Solís; Gloria Gutiérrez-Alcalá; Luis C. Romero; Cecilia Gotor
Regulation of the expression of the cytosolic O-acetylserine(thiol)lyase gene (Atcys-3A) from Arabidopsis thalianaunder heavy metal stress conditions has been investigated. Northern blot analysis of Atcys-3A expression shows a 7-fold induction after 18 h of cadmium treatment. Addition of 50 μm CdCl2 to the irrigation medium of matureArabidopsis plants induces a rapid accumulation of the mRNA throughout the leaf lamina, the root and stem cortex, and stem vascular tissues when compared with untreated plants, as observed byin situ hybridization. High pressure liquid chromatography analysis of GSH content shows a transient increase after 18 h of metal treatment. Our results are compatible with a high cysteine biosynthesis rate under heavy metal stress required for the synthesis of GSH and phytochelatins, which are involved in the plant detoxification mechanism.Arabidopsis-transformed plants overexpressing theAtcys-3A gene by up to 9-fold show increased tolerance to cadmium when grown in medium containing 250 μmCdCl2, suggesting that increased cysteine availability is responsible for cadmium tolerance. In agreement with these results, exogenous addition of cystine can, to some extent, also favor the growth of wild-type plants in cadmium-containing medium. Cadmium accumulates to higher levels in leaves of tolerant transformed lines than in wild-type plants.
Plant Physiology | 2010
Consolación Álvarez; Leticia Calo; Luis C. Romero; Irene García; Cecilia Gotor
Cysteine (Cys) occupies a central position in plant metabolism due to its biochemical functions. Arabidopsis (Arabidopsis thaliana) cells contain different O-acetylserine(thiol)lyase (OASTL) enzymes that catalyze the biosynthesis of Cys. Because they are localized in the cytosol, plastids, and mitochondria, this results in multiple subcellular Cys pools. Much progress has been made on the most abundant OASTL enzymes; however, information on the less abundant OASTL-like proteins has been scarce. To unequivocally establish the enzymatic reaction catalyzed by the minor cytosolic OASTL isoform CS-LIKE (for Cys synthase-like; At5g28030), we expressed this enzyme in bacteria and characterized the purified recombinant protein. Our results demonstrate that CS-LIKE catalyzes the desulfuration of l-Cys to sulfide plus ammonia and pyruvate. Thus, CS-LIKE is a novel l-Cys desulfhydrase (EC 4.4.1.1), and we propose to designate it DES1. The impact and functionality of DES1 in Cys metabolism was revealed by the phenotype of the T-DNA insertion mutants des1-1 and des1-2. Mutation of the DES1 gene leads to premature leaf senescence, as demonstrated by the increased expression of senescence-associated genes and transcription factors. Also, the absence of DES1 significantly reduces the total Cys desulfuration activity in leaves, and there is a concomitant increase in the total Cys content. As a consequence, the expression levels of sulfur-responsive genes are deregulated, and the mutant plants show enhanced antioxidant defenses and tolerance to conditions that promote oxidative stress. Our results suggest that DES1 from Arabidopsis is an l-Cys desulfhydrase involved in maintaining Cys homeostasis, mainly at late developmental stages or under environmental perturbations.
Plant Cell and Environment | 2008
Stephan Krueger; Annette Niehl; M. Carmen Lopez Martin; Dirk Steinhauser; Andrea Donath; Tatjana M. Hildebrandt; Luis C. Romero; Rainer Hoefgen; Cecilia Gotor; Holger Hesse
In plants, the enzymes for cysteine synthesis serine acetyltransferase (SAT) and O-acetylserine-(thiol)-lyase (OASTL) are present in the cytosol, plastids and mitochondria. However, it is still not clearly resolved to what extent the different compartments are involved in cysteine biosynthesis and how compartmentation influences the regulation of this biosynthetic pathway. To address these questions, we analysed Arabidopsis thaliana T-DNA insertion mutants for cytosolic and plastidic SAT isoforms. In addition, the subcellular distribution of enzyme activities and metabolite concentrations implicated in cysteine and glutathione biosynthesis were revealed by non-aqueous fractionation (NAF). We demonstrate that cytosolic SERAT1.1 and plastidic SERAT2.1 do not contribute to cysteine biosynthesis to a major extent, but may function to overcome transport limitations of O-acetylserine (OAS) from mitochondria. Substantiated by predominantly cytosolic cysteine pools, considerable amounts of sulphide and presence of OAS in the cytosol, our results suggest that the cytosol is the principal site for cysteine biosynthesis. Subcellular metabolite analysis further indicated efficient transport of cysteine, gamma-glutamylcysteine and glutathione between the compartments. With respect to regulation of cysteine biosynthesis, estimation of subcellular OAS and sulphide concentrations established that OAS is limiting for cysteine biosynthesis and that SAT is mainly present bound in the cysteine-synthase complex.
International Journal of Hydrogen Energy | 2002
Martin Winkler; Anja Hemschemeier; Cecilia Gotor; Anastasios Melis; Thomas Happe
Abstract Recent studies indicate that [Fe]-hydrogenases and H 2 metabolism are widely distributed among green algae. The enzymes are simple structured and catalyze H 2 evolution with similar rates than the more complex [Fe]-hydrogenases from bacteria. Different green algal species developed diverse strategies to survive under sulfur deprivation. Chlamydomonas reinhardtii evolves large quantities of hydrogen gas in the absence of sulfur. In a sealed culture of C. reinhardtii , the photosynthetic O 2 evolution rate drops below the rate of respiratory O 2 consumption due to a reversible inhibition of photosystem II, thus leading to an intracellular anaerobiosis. The algal cells survive under these anaerobic conditions by switching their metabolism to a kind of photo-fermentation. Although possessing a functional [Fe]-hydrogenase gene, the cells of Scenedesmus obliquus produce no significant amounts of H 2 under S-depleted conditions. Biochemical analyses indicate that S. obliquus decreases almost the complete metabolic activities while maintaining a low level of respiratory activity.
Plant Physiology | 2014
Denise Scuffi; Consolación Álvarez; Natalia Laspina; Cecilia Gotor; Lorenzo Lamattina; Carlos García-Mata
An l-cysteine desulfhydrase is a unique component of ABA signaling in guard cells, mediating H2S production and acting upstream of nitric oxide to induce stomatal closure. Abscisic acid (ABA) is a well-studied regulator of stomatal movement. Hydrogen sulfide (H2S), a small signaling gas molecule involved in key physiological processes in mammals, has been recently reported as a new component of the ABA signaling network in stomatal guard cells. In Arabidopsis (Arabidopsis thaliana), H2S is enzymatically produced in the cytosol through the activity of l-cysteine desulfhydrase (DES1). In this work, we used DES1 knockout Arabidopsis mutant plants (des1) to study the participation of DES1 in the cross talk between H2S and nitric oxide (NO) in the ABA-dependent signaling network in guard cells. The results show that ABA did not close the stomata in isolated epidermal strips of des1 mutants, an effect that was restored by the application of exogenous H2S. Quantitative reverse transcription polymerase chain reaction analysis demonstrated that ABA induces DES1 expression in guard cell-enriched RNA extracts from wild-type Arabidopsis plants. Furthermore, stomata from isolated epidermal strips of Arabidopsis ABA receptor mutant pyrabactin-resistant1 (pyr1)/pyrabactin-like1 (pyl1)/pyl2/pyl4 close in response to exogenous H2S, suggesting that this gasotransmitter is acting downstream, although acting independently of the ABA receptor cannot be ruled out with this data. However, the Arabidopsis clade-A PROTEIN PHOSPHATASE2C mutant abscisic acid-insensitive1 (abi1-1) does not close the stomata when epidermal strips were treated with H2S, suggesting that H2S required a functional ABI1. Further studies to unravel the cross talk between H2S and NO indicate that (1) H2S promotes NO production, (2) DES1 is required for ABA-dependent NO production, and (3) NO is downstream of H2S in ABA-induced stomatal closure. Altogether, data indicate that DES1 is a unique component of ABA signaling in guard cells.
The Plant Cell | 2012
Consolación Álvarez; Irene García; Inmaculada Moreno; María Esther Pérez-Pérez; José L. Crespo; Luis C. Romero; Cecilia Gotor
This article highlights the role of hydrogen sulfide as a relevant signaling molecule in plants, of comparable importance as described in animals. This study shows the regulatory role of sulfide generated by the cytosolic l-Cys desulfhydrase 1 enzyme on autophagy in eukaryotes. In Arabidopsis thaliana, DES1 is the only identified l-Cysteine desulfhydrase located in the cytosol, and it is involved in the degradation of cysteine and the concomitant production of H2S in this cell compartment. Detailed characterization of the T-DNA insertion mutants des1-1 and des1-2 has provided insight into the role of sulfide metabolically generated in the cytosol as a signaling molecule. Mutations of L-CYS DESULFHYDRASE 1 (DES1) impede H2S generation in the Arabidopsis cytosol and strongly affect plant metabolism. Senescence-associated vacuoles are detected in mesophyll protoplasts of des1 mutants. Additionally, DES1 deficiency promotes the accumulation and lipidation of the ATG8 protein, which is associated with the process of autophagy. The transcriptional profile of the des1-1 mutant corresponds to its premature senescence and autophagy-induction phenotypes, and restoring H2S generation has been shown to eliminate the phenotypic defects of des1 mutants. Moreover, sulfide is able to reverse ATG8 accumulation and lipidation, even in wild-type plants when autophagy is induced by carbon starvation, suggesting a general effect of sulfide on autophagy regulation that is unrelated to sulfur or nitrogen limitation stress. Our results suggest that cysteine-generated sulfide in the cytosol negatively regulates autophagy and modulates the transcriptional profile of Arabidopsis.
Plant Physiology | 2002
Cristina G. Ravina; Chwenn-In Chang; George Tsakraklides; Jeffery P. McDermott; José M. Vega; Thomas Leustek; Cecilia Gotor; John P. Davies
Algae and vascular plants are cysteine (Cys) prototrophs. They are able to import, reduce, and assimilate sulfate into Cys, methionine, and other organic sulfur-containing compounds. Characterization of genes encoding the enzymes required for Cys biosynthesis from the unicellular green alga Chlamydomonas reinhardtii reveals that transcriptional and posttranscriptional mechanisms regulate the pathway. The derived amino acid sequences of the C. reinhardtiigenes encoding 5′-adenylylsulfate (APS) reductase and serine (Ser) acetyltransferase are orthologous to sequences from vascular plants. The Cys biosynthetic pathway of C. reinhardtii is regulated by sulfate availability. The steady-state level of transcripts and activity of ATP sulfurylase, APS reductase, Ser acetyltransferase, and O-acetyl-Ser (thiol) lyase increase when cells are deprived of sulfate. Thesac1 mutation, which impairs C. reinhardtii ability to acclimate to sulfur-deficient conditions, prevents the increase in accumulation of the transcripts encoding these enzymes and also prevents the increase in activity of all the enzymes except APS reductase. The sac2 mutation, which does not affect accumulation of APS reductase transcripts, blocks the increase in APS reductase activity. These results suggest that APS reductase activity is regulated posttranscriptionally in aSAC2-dependent process.
FEBS Letters | 1995
Consuelo Barroso; José M. Vega; Cecilia Gotor
A cDNA, Atcys‐3A, encoding O‐acetylserine‐(thiol)lyase has been isolated from Arabidopsis thaliana. The deduced peptide sequence showed a high level of similarity with the bacterial counterpart, and a remarkable percentage of identity with other higher plant O‐acetylserine(thiol)lyase genes. Sequence comparision and Southern blot analysis suggested that Atcys‐3A was a new and different to the previously reported member of the cytosolic gene family in Arabidopsis. The Atcys‐3A expression was activated by sulfur limitation, requiring a carbon and nitrogen source for maximal expression. A similar pattern of regulation was observed at the O‐acetylserine(thiol)lyase activity level. Northern blot analysis also showed an organ‐specific expression of Atcys‐3A.
The Plant Cell | 2010
María Ángeles Bermúdez; Maria Angeles Páez-Ochoa; Cecilia Gotor; Luis C. Romero
The cysteine molecule plays an essential role in cells because it is part of proteins and because it functions as a reduced sulfur donor molecule. In addition, the cysteine molecule may also play a role in the redox signaling of different stress processes. Even though the synthesis of cysteine by the most abundant of the isoforms of O-acetylserine(thiol)lyase in the chloroplast, the mitochondria and the cytosol is relatively well-understood, the role of the other less common isoforms homologous to O-acetylserine(thiol)lyase is unknown. Several studies on two of these isoforms, one located in the cytosol and the other one in the chloroplast, have shown that while one isoform operates with a desulfhydrase activity and is essential to regulate the homeostasis of cysteine in the cytosol, the other, located in the chloroplast, synthesizes S-sulfocysteine. This metabolite appears to be essential for the redox regulation of the chloroplast under certain lighting conditions.S-sulfocysteine synthase is a newly discovered enzymatic activity located in chloroplasts of Arabidopsis thaliana. It plays an important role in chloroplast function and is essential for light-dependent redox regulation within the chloroplast. The loss of this activity results in the accumulation of reactive oxygen species and dramatic changes in phenotype that are dependent on the light regime. In bacteria, the biosynthesis of Cys is accomplished by two enzymes that are encoded by the cysK and cysM genes. CysM is also able to use thiosulfate as a substrate to produce S-sulfocysteine. In plant cells, the biosynthesis of Cys occurs in the cytosol, mitochondria, and chloroplasts. Chloroplasts contain two O-acetylserine(thiol)lyase homologs, which are encoded by the OAS-B and CS26 genes in Arabidopsis thaliana. An in vitro enzymatic analysis of the recombinant CS26 protein demonstrated that this isoform possesses S-sulfocysteine synthase activity and lacks O-acetylserine(thiol)lyase activity. In vivo functional analysis of this enzyme in knockout mutants demonstrated that mutation of CS26 suppressed the S-sulfocysteine synthase activity that was detected in the wild type; furthermore, the cs26 mutants exhibited a reduction in size and showed paleness, but penetrance of the growth phenotype depended on the light regime. The cs26 mutant plants also had reductions in chlorophyll content and photosynthetic activity (neither of which were observed in oas-b mutants) as well as elevated glutathione levels. However, cs26 leaves were not able to properly detoxify reactive oxygen species, which accumulated to high levels under long-day growth conditions. The transcriptional profile of the cs26 mutant revealed that the mutation had a pleiotropic effect on many cellular and metabolic processes. Our findings reveal that S-sulfocysteine and the activity of S-sulfocysteine synthase play important roles in chloroplast function and are essential for light-dependent redox regulation within the chloroplast.
Plant Physiology | 2008
M. Carmen López-Martín; Manuel Becana; Luis C. Romero; Cecilia Gotor
Plant cells contain different O-acetylserine(thiol)lyase (OASTL) enzymes involved in cysteine (Cys) biosynthesis and located in different subcellular compartments. These enzymes are made up of a complex variety of isoforms resulting in different subcellular Cys pools. To unravel the contribution of cytosolic Cys to plant metabolism, we characterized the knockout oas-a1.1 and osa-a1.2 mutants, deficient in the most abundant cytosolic OASTL isoform in Arabidopsis (Arabidopsis thaliana). Total intracellular Cys and glutathione concentrations were reduced, and the glutathione redox state was shifted in favor of its oxidized form. Interestingly, the capability of the mutants to chelate heavy metals did not differ from that of the wild type, but the mutants have an enhanced sensitivity to cadmium. With the aim of establishing the metabolic network most influenced by the cytosolic Cys pool, we used the ATH1 GeneChip for evaluation of differentially expressed genes in the oas-a1.1 mutant grown under nonstress conditions. The transcriptomic footprints of mutant plants had predicted functions associated with various physiological responses that are dependent on reactive oxygen species and suggested that the mutant was oxidatively stressed. Evidences that the mutation caused a perturbation in H2O2 homeostasis are that, in the knockout, H2O2 production was localized in shoots and roots; spontaneous cell death lesions occurred in the leaves; and lignification and guaiacol peroxidase activity were significantly increased. All these findings indicate that a deficiency of OAS-A1 in the cytosol promotes a perturbation in H2O2 homeostasis and that Cys is an important determinant of the antioxidative capacity of the cytosol in Arabidopsis.