Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cecilia Herraiz is active.

Publication


Featured researches published by Cecilia Herraiz.


Human Mutation | 2009

Identification and functional analysis of novel variants of the human melanocortin 1 receptor found in melanoma patients.

Ana B. Pérez Oliva; Lara P. Fernéndez; Carlos DeTorre; Cecilia Herraiz; Jorge A. Martínez-Escribano; Javier Benitez; José A. Teruel; José C. García-Borrón; Celia Jiménez-Cervantes; Gloria Ribas

The melanocortin 1 receptor, a Gs protein‐coupled receptor expressed in epidermal melanocytes, is a major determinant of skin pigmentation and phototype and an important contributor to melanoma risk. MC1R activation stimulates synthesis of black, strongly photoprotective eumelanin pigments. Several MC1R alleles are associated with red hair, fair skin, increased sensitivity to ultraviolet radiation, and increased skin cancer risk. The MC1R gene is highly polymorphic, but only a few naturally occurring alleles have been functionally characterized, which complicates the establishment of accurate correlations between the signaling properties of mutant alleles and defined cutaneous phenotypes. We report the functional characterization of six MC1R alleles found in Spanish melanoma patients. Two variants (c.152T>C, p.Val51Ala and c.865T>C, p.Cys289Arg) have never been described, and the others (c.112G>A, p.Val38Met; c.122C>T, p.Ser41Phe; c.383T>C, p.Met128Thr; and c.842A>G, p.Asn281Ser) have not been analyzed for function. p.Asn281Ser corresponds to a functionally silent polymorphism. The other mutations are associated with varying degrees of loss of function (LOF), from moderate decreases in coupling to the cAMP pathway (p.Val38Met and p.Val51Ala) to nearly complete absence of functional coupling (p.Ser41Phe, p.Met128Thr, and p.Cys289Arg). The LOF p.Met128Thr and p.Cys289Arg mutants are trafficked to the cell surface, but are unable to bind agonists efficiently. Conversely, LOF of p.Val38Met, p.Ser41Phe, and p.Val51Ala is due to reduced cell surface expression as a consequence of retention in the endoplasmic reticulum (ER). Therefore, LOF of MC1R alleles is frequently associated with aberrant forward trafficking and accumulation within the ER or with inability to bind properly the activatory ligand. Hum Mutat 30:1–12, 2009.


Journal of Cellular Physiology | 2009

Aberrant Trafficking of Human Melanocortin 1 Receptor Variants Associated With Red Hair and Skin Cancer: Steady-State Retention of Mutant Forms in the Proximal Golgi

Berta L. Sánchez-Laorden; Cecilia Herraiz; Julio C. Valencia; Vincent J. Hearing; Celia Jiménez-Cervantes; José C. García-Borrón

The melanocortin 1 receptor (MC1R), a Gs protein‐coupled receptor (GPCR) expressed in melanocytes, is a major determinant of skin pigmentation and phototype. MC1R activation stimulates melanogenesis and increases the ratio of black, strongly photoprotective eumelanins to reddish, poorly photoprotective pheomelanins. Several MC1R alleles are associated with red hair, fair skin, increased sensitivity to ultraviolet radiation (the RHC phenotype) and increased skin cancer risk. Three highly penetrant RHC variants, R151C, R160W, and D294H are loss‐of‐function MC1R mutants with altered cell surface expression. In this study, we show that forward trafficking was normal for D294H. Conversely, export traffic was impaired for R151C, which accumulated in the endoplasmic reticulum (ER), and for R160W, which was enriched in the cis‐Golgi. This is the first report of steady‐state retention in a post‐ER secretory compartment of a GPCR mutant found in the human population. Residues R151 and R160 are located in the MC1R second intracellular loop (il2). Two other mutations in il2, T157A preventing T157 phosphorylation and R162P disrupting a 160RARR163 motif, also caused intracellular retention. Moreover, T157 was phosphorylated in wild‐type MC1R and a T157D mutation mimicking constitutive phosphorylation allowed normal traffic, and rescued the retention phenotype of R160W and R162P. Therefore, MC1R export is likely regulated by T157 phosphorylation and the 160RARR163 arginine‐based motif functions as an ER retrieval signal. These elements are conserved in mammalian MC1Rs and in all five types of human melanocortin receptors. Thus, members of this GPCR subfamily might share common mechanisms for regulation of plasma membrane expression. J. Cell. Physiol. 220: 640–654, 2009.


FEBS Letters | 2009

Melanocortin 1 receptor mutations impact differentially on signalling to the cAMP and the ERK mitogen‐activated protein kinase pathways

Cecilia Herraiz; Celia Jiménez-Cervantes; Paola Zanna; José C. García-Borrón

Melanocortin 1 receptor (MC1R), a Gs protein‐coupled receptor expressed in melanocytes, is a major determinant of skin pigmentation, phototype and cancer risk. MC1R activates cAMP and mitogen‐activated protein kinase ERK1/ERK2 signalling. When expressed in rat pheochromocytoma cell line cells, the R151C, R160W and D294H MC1R variants associated with melanoma and impaired cAMP signalling mediated ERK activation and ERK‐dependent, agonist‐induced neurite outgrowth comparable with wild‐type. Dose–response curves for ERK activation and cAMP production indicated higher sensitivity of the ERK response. Thus, the melanoma‐associated MC1R mutations impact differently on cAMP and ERK signalling, suggesting that cAMP is not responsible for functional coupling of MC1R to the ERK cascade.


Biochemical and Biophysical Research Communications | 2008

Mechanism of dimerization of the human melanocortin 1 receptor.

Paola Zanna; Berta L. Sánchez-Laorden; Ana B. Pérez-Oliva; María C. Turpín; Cecilia Herraiz; Celia Jiménez-Cervantes; José C. García-Borrón

The melanocortin 1 receptor (MC1R) is a dimeric G protein-coupled receptor expressed in melanocytes, where it regulates the amount and type of melanins produced and determines the tanning response to ultraviolet radiation. We have studied the mechanisms of MC1R dimerization. Normal dimerization of a deleted mutant lacking the seventh transmembrane fragment and the C-terminal cytosolic extension excluded coiled-coil interactions as the basis of dimerization. Conversely, the electrophoretic pattern of wild type receptor and several Cys-->Ala mutants showed that four disulfide bonds are established between the monomers. Disruption of any of these bonds abolished MC1R function, but only the one involving Cys35 was essential for traffic to the plasma membrane. A quadruple Cys35-267-273-275Ala mutant migrating as a monomer in SDS-PAGE in the absence of reducing agents was able to dimerize with WT, suggesting that in addition to disulfide bond formation, dimerization involves non-covalent interactions, likely of domain swap type.


The International Journal of Biochemistry & Cell Biology | 2012

Functional status and relationships of melanocortin 1 receptor signaling to the cAMP and extracellular signal-regulated protein kinases 1 and 2 pathways in human melanoma cells.

Cecilia Herraiz; Fabrice Journé; Ghanem Elias Ghanem; Celia Jiménez-Cervantes; José C. García-Borrón

Melanocortin 1 receptor (MC1R), a major determinant of skin phototype frequently mutated in melanoma, is a Gs protein-coupled receptor that regulates pigment production in melanocytes. MC1R stimulation activates cAMP synthesis and the extracellular signal-regulated (ERK) ERK1 and ERK2. In human melanocytes, ERK activation by MC1R relies on cAMP-independent transactivation of the c-KIT receptor. Thus MC1R functional coupling to the cAMP and ERK pathways may involve different structural requirements giving raise to biased effects of skin cancer-associated mutations. We evaluated the impact of MC1R mutations on ERK activation, cAMP production and agonist binding. We found that MC1R mutations impair cAMP production much more often than ERK activation, suggesting less stringent requirements for functional coupling to the ERK pathway. We examined the crosstalk of the cAMP and ERK pathways in HBL human melanoma cells (wild-type for MC1R, NRAS and BRAF). ERK activation by constitutively active upstream effectors or pharmacological inhibition had little effect on MC1R-stimulated cAMP synthesis. High cAMP levels were compatible with normal ERK activation but, surprisingly, the adenylyl cyclase activator forskolin abolished ERK activation by MC1R, most likely by a cAMP-independent mechanism. These results indicate little crosstalk of the cAMP and ERK pathways in HBL melanoma cells. Finally, we studied cAMP accumulation in a panel of 22 human melanoma cell lines stimulated with MC1R agonists or forskolin. cAMP synthesis was often inhibited, even in cells wild-type for MC1R and NRAS. Therefore, the cAMP pathway is more frequently impaired in melanoma than could be predicted by the MC1R or NRAS genotype.


Journal of Cell Science | 2013

Differential and competitive regulation of human melanocortin 1 receptor signaling by β-arrestin isoforms

Marta Abrisqueta; Cecilia Herraiz; Ana B. Pérez Oliva; Berta L. Sánchez-Laorden; Concepción Olivares; Celia Jiménez-Cervantes; José C. García-Borrón

Summary The melanocortin 1 receptor (MC1R) is a G-protein-coupled receptor (GPCR) crucial for the regulation of melanocyte proliferation and differentiation. MC1R activation by melanocortin hormones triggers the cAMP pathway and stimulates the extracellular-signal-regulated protein kinases ERK1 and ERK2 to promote synthesis of photoprotective eumelanin pigments, among other effects. Signaling from most GPCRs is regulated by the &bgr;-arrestin (ARRB) family of cytosolic multifunctional adaptor proteins, which mediate signal termination and endocytosis of GPCR–agonist complexes. The ubiquitously expressed non-visual &bgr;-arrestin1 (ARRB1) and &bgr;-arrestin2 (ARRB2) are highly similar but not functionally equivalent. Their role in the regulation of MC1R is unknown. Using a combination of co-immunoprecipitation, gel filtration chromatography, confocal microscopy, siRNA-mediated knockdown and functional assays, we demonstrated agonist-independent competitive interactions of ARRB1 and ARRB2 with MC1R, which might also be independent of phosphorylation of Ser/Thr residues in the C-terminus of the MC1R. The effects of ARRBs were isoform specific; ARRB2 inhibited MC1R agonist-dependent cAMP production but not ERK activation, stimulated internalization and showed prolonged co-localization with the receptor in endocytic vesicles. By contrast, ARRB1 had no effect on internalization or functional coupling, but competed with ARRB2 for binding MC1R, which might increase signaling by displacement of inhibitory ARRB2. These data suggest a new mechanism of MC1R functional regulation based on the relative expression of ARRB isoforms, with possible activatory ARRB1-dependent effects arising from partial relief of inhibitory ARRB2–MC1R interactions. Thus, competitive displacement of inhibitory ARRBs by functionally neutral ARRB isoforms might exert a paradigm-shifting signal-promoting effect to fine-tune signaling downstream of certain GPCRs.


Biochimica et Biophysica Acta | 2017

MC1R signaling. Intracellular partners and pathophysiological implications

Cecilia Herraiz; José C. García-Borrón; Celia Jiménez-Cervantes; Conchi Olivares

The melanocortin-1 receptor (MC1R) preferentially expressed in melanocytes is best known as a key regulator of the synthesis of epidermal melanin pigments. Its paracrine stimulation by keratinocyte-derived melanocortins also activates DNA repair pathways and antioxidant defenses to build a complex, multifaceted photoprotective response. Many MC1R actions rely on cAMP-dependent activation of two transcription factors, MITF and PGC1α, but pleiotropic MC1R signaling also involves activation of mitogen-activated kinases and AKT. MC1R partners such as β-arrestins, PTEN and the E3 ubiquitin ligase MGRN1 differentially regulate these pathways. The MC1R gene is complex and polymorphic, with frequent variants associated with skin phenotypes and increased cancer risk. We review current knowledge of signaling from canonical MC1R, its splice isoforms and natural polymorphic variants. Recently discovered intracellular targets and partners are also discussed, to highlight the diversity of mechanisms that may contribute to normal and pathological variation of pigmentation and sensitivity to solar radiation-induced damage. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.


Pigment Cell & Melanoma Research | 2011

N‐glycosylation of the human melanocortin 1 receptor: occupancy of glycosylation sequons and functional role

Cecilia Herraiz; Berta L. Sánchez-Laorden; Celia Jiménez-Cervantes; José C. García-Borrón

The melanocortin 1 receptor (MC1R), a major determinant of skin pigmentation and phototype, mediates the actions of α‐melanocyte‐stimulating hormone on melanocytes and is critical for melanocyte proliferation and differentiation. MC1R has two putative N‐glycosylation targets, Asn15 and Asn29. It has been shown that MC1R is a glycoprotein with an unusual sensitivity to endoglycosidase H digestion. However, the occupancy and functional importance of each specific glycosylation sequon remains unknown. We demonstrate that MC1R is N‐glycosylated at Asn15 and Asn29, with structurally and functionally different glycan chains. N‐glycosylation is not necessary for high affinity agonist binding or functional coupling but has a strong effect on the availability of MC1R molecules on the plasma membrane, most likely by a combination of improved forward trafficking and decreased internalization. Finally, we found that MC1R variants exhibit different degrees of glycosylation which do not show a simple correlation with their functional status or intracellular trafficking.


Seminars in Cell & Developmental Biology | 2017

Functional interplay between secreted ligands and receptors in melanoma

Cecilia Herraiz; Celia Jiménez-Cervantes; Berta Sánchez-Laorden; José C. García-Borrón

Melanoma, the most aggressive form of skin cancer, results from the malignant transformation of melanocytes located in the basement membrane separating the epidermal and dermal skin compartments. Cutaneous melanoma is often initiated by solar ultraviolet radiation (UVR)-induced mutations. Melanocytes intimately interact with keratinocytes, which provide growth factors and melanocortin peptides acting as paracrine regulators of proliferation and differentiation. Keratinocyte-derived melanocortins activate melanocortin-1 receptor (MC1R) to protect melanocytes from the carcinogenic effect of UVR. Accordingly, MC1R is a major determinant of susceptibility to melanoma. Despite extensive phenotypic heterogeneity and high mutation loads, the molecular basis of melanomagenesis and the molecules mediating the crosstalk between melanoma and stromal cells are relatively well understood. Mutations of intracellular effectors of receptor tyrosine kinase (RTK) signalling, notably NRAS and BRAF, are major driver events more frequent than mutations in RTKs. Nevertheless, melanomas often display aberrant signalling from RTKs such as KIT, ERRB1-4, FGFR, MET and PDGFR, which contribute to disease progression and resistance to targeted therapies. Progress has also been made to unravel the role of the tumour secretome in preparing the metastatic niche. However, key aspects of the melanoma-stroma interplay, such as the molecular determinants of dormancy, remain poorly understood.


PLOS ONE | 2015

Functional Characterization of MC1R-TUBB3 Intergenic Splice Variants of the Human Melanocortin 1 Receptor

Cecilia Herraiz; Conchi Olivares; María Castejón-Griñán; Marta Abrisqueta; Celia Jiménez-Cervantes; José C. García-Borrón

The melanocortin 1 receptor gene (MC1R) expressed in melanocytes is a major determinant of skin pigmentation. It encodes a Gs protein-coupled receptor activated by α-melanocyte stimulating hormone (αMSH). Human MC1R has an inefficient poly(A) site allowing intergenic splicing with its downstream neighbour Tubulin-β-III (TUBB3). Intergenic splicing produces two MC1R isoforms, designated Iso1 and Iso2, bearing the complete seven transmembrane helices from MC1R fused to TUBB3-derived C-terminal extensions, in-frame for Iso1 and out-of-frame for Iso2. It has been reported that exposure to ultraviolet radiation (UVR) might promote an isoform switch from canonical MC1R (MC1R-001) to the MC1R-TUBB3 chimeras, which might lead to novel phenotypes required for tanning. We expressed the Flag epitope-tagged intergenic isoforms in heterologous HEK293T cells and human melanoma cells, for functional characterization. Iso1 was expressed with the expected size. Iso2 yielded a doublet of Mr significantly lower than predicted, and impaired intracellular stability. Although Iso1- and Iso2 bound radiolabelled agonist with the same affinity as MC1R-001, their plasma membrane expression was strongly reduced. Decreased surface expression mostly resulted from aberrant forward trafficking, rather than high rates of endocytosis. Functional coupling of both isoforms to cAMP was lower than wild-type, but ERK activation upon binding of αMSH was unimpaired, suggesting imbalanced signaling from the splice variants. Heterodimerization of differentially labelled MC1R-001 with the splicing isoforms analyzed by co-immunoprecipitation was efficient and caused decreased surface expression of binding sites. Thus, UVR-induced MC1R isoforms might contribute to fine-tune the tanning response by modulating MC1R-001 availability and functional parameters.

Collaboration


Dive into the Cecilia Herraiz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabrice Journé

Université libre de Bruxelles

View shared research outputs
Researchain Logo
Decentralizing Knowledge