Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cecilia M. Canessa is active.

Publication


Featured researches published by Cecilia M. Canessa.


Journal of Biological Chemistry | 1999

The Serum and Glucocorticoid Kinase sgk Increases the Abundance of Epithelial Sodium Channels in the Plasma Membrane of Xenopus Oocytes

Diego de la Rosa; Ping Zhang; Anikó Náray-Fejes-Tóth; Géza Fejes-Tóth; Cecilia M. Canessa

The serum- and glucocorticoid-induced kinase (sgk) is a serine and threonine kinase that stimulates amiloride-sensitive sodium transport in Xenopus oocytes. Because aldosterone induces phosphorylation on serine/threonine (Ser/Thr) residues in the carboxyl termini of β and γ subunits of epithelial sodium channels (ENaCs) and causes an increase in thesgk transcript in mammalian and amphibian renal epithelial cells, it seems likely that sgk mediates the action of aldosterone to stimulate sodium transport. Experiments were performed in Xenopus oocytes to determine the mechanism by whichsgk increases sodium conductance by examining its effect on phosphorylation, kinetics, and membrane abundance of ENaC. Our results demonstrate that deletions of the carboxyl termini of the three subunits do not inhibit sgk-induced sodium current, indicating that the effect of sgk is not mediated via phosphorylation within the carboxyl termini of ENaC. They also show no evidence that sgk reduces the removal of ENaC from the plasma membrane because mutations of tyrosine residues in the sequences necessary for endocytosis and degradation did not affect the response to sgk. Further studies performed with the patch-clamp technique indicated that sgk did not increase the open probability or changed the kinetics of ENaC. These studies, however, showed a 3-fold increase in the abundance of ENaC in the plasma membrane in the presence of sgk compared with control. Together, the experiments indicate that sgk stimulates electrogenic sodium transport by increasing the number of ENaCs at the cell surface and suggest that sgk may mediate the early increase in aldosterone-induced sodium current.


Journal of Biological Chemistry | 1997

The Activity of the Epithelial Sodium Channel Is Regulated by Clathrin-mediated Endocytosis

Richard A. Shimkets; Richard P. Lifton; Cecilia M. Canessa

Activity of the epithelial sodium channel (ENaC) is a key determinant of sodium homeostasis and blood pressure. Liddle’s syndrome, an inherited form of hypertension, is caused by mutations that delete or alter PY domains in the carboxyl termini of β or γ ENaC subunits, leading to increased channel activity. In this study we investigated the mechanism of this effect by analysis of wild-type and mutant ENaC activity in Xenopus oocytes. By inhibiting insertion of new channels into the plasma membrane with brefeldin A, we demonstrate that the half-life of the activity of channels containing Liddle’s mutations is markedly prolonged compared with wild-type channels (t½ of 30 h in mutant versus 3.6 in wild-type, p < 0.001). We investigated the involvement of clathrin-coated pit-mediated endocytosis by co-expressing a dominant-negative dynamin mutant with wild-type ENaC in oocytes. Expression of this specific inhibitor of endocytosis leads to a large increase in the activity of wild-type channels, demonstrating that normal turnover of this channel is through the clathrin-coated pit pathway. In contrast, co-expression of Liddle’s mutations and dynamin mutants leads to no further increase in channel activity, consistent with one of the effects of Liddle’s mutations being the loss of endocytosis of these channels. These findings demonstrate the normal mechanism of turnover of ENaC from the cell surface and demonstrate a mechanism that can account for the increased number of channels in the plasma membrane seen in Liddle’s syndrome.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system

Diego de la Rosa; Ping Zhang; Deren Shao; Fletcher A. White; Cecilia M. Canessa

Acid-sensitive ion channels (ASIC) are proton-gated ion channels expressed in neurons of the mammalian central and peripheral nervous systems. The functional role of these channels is still uncertain, but they have been proposed to constitute mechanoreceptors and/or nociceptors. We have raised specific antibodies for ASIC1, ASIC2, ASIC3, and ASIC4 to examine the distribution of these proteins in neurons from dorsal root ganglia (DRG) and to determine their subcellular localization. Western blot analysis demonstrates that all four ASIC proteins are expressed in DRG and sciatic nerve. Immunohistochemical experiments and functional measurements of unitary currents from the ASICs with the patch–clamp technique indicate that ASIC1 localizes to the plasma membrane of small-, medium-, and large-diameter cells, whereas ASIC2 and ASIC3 are preferentially in medium to large cells. Neurons coexpressing ASIC2 and ASIC3 form predominantly heteromeric ASIC2–3 channels. Two spliced forms, ASIC2a and ASIC2b, colocalize in the same population of DRG neurons. Within cells, the ASICs are present mainly on the plasma membrane of the soma and cellular processes. Functional studies indicate that the pH sensitivity for inactivation of ASIC1 is much higher than the one for activation; hence, increases in proton concentration will inactivate the channel. These functional properties and localization in DRG have profound implications for the putative functional roles of ASICs in the nervous system.


Current Opinion in Nephrology and Hypertension | 1994

Epithelial sodium channels.

Bernard C. Rossier; Cecilia M. Canessa; Laurent Schild; Jean-Daniel Horisberger

The highly selective amiloride-sensitive epithelial sodium channel is expressed in the distal part of the nephron, the distal colon, and the lung. It plays a critical role in the control of sodium balance, extracellular volume, blood pressure, and of fluid reabsorption in the lung. The primary structure of the rat epithelial sodium channel has recently been determined. It is a heteromultimeric protein made up of three homologous subunits (alpha, beta, and gamma). The biophysical properties, the cell distribution, and the regulation of this channel will be reviewed, with emphasis on its expression in the kidney, colon, and lung, where the clinical implications are most relevant. The epithelial sodium channel is a member of a novel gene superfamily that encodes cation channels involved in the control of cellular and extracellular volume and in the control of distinct functions such as taste transduction and mechanotransduction.


The Journal of Physiology | 2003

Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system

Diego de la Rosa; Stefan R. Krueger; Annette Kolar; Deren Shao; Reiko Maki Fitzsimonds; Cecilia M. Canessa

The acid‐sensitive ion channel ASIC1 is a proton‐gated ion channel from the mammalian nervous system. Its expression in sensory neurons and activation by low extracellular pH suggest that ASIC is involved in transmitting nociceptive impulses produced by the acidification caused by injury or inflammation. However, ASIC1 expression is not restricted to sensory neurons. To understand the functional role of ASIC1 in the CNS we investigated its expression and subcellular distribution therein. In particular, we examined the presence of ASIC1 in domains where the local pH may drop sufficiently to activate ASIC1 under physiological conditions. Immunostaining with specific antibodies revealed broad expression of ASIC1 in many areas of the adult rat brain including the cerebral cortex, hippocampus and cerebellum. Within cells, ASIC1 was found predominantly throughout the soma and along the branches of axons and dendrites. ASIC1 was not enriched in the microdomains where pH may reach low values, such as in synaptic vesicles or synaptic membranes. Pre‐ or postsynaptic ASIC1 was not gated by synaptic activity in cultured hippocampal neurons. Blockage or desensitization of ASIC1 with amiloride or pH 6.7, respectively, did not modify postsynaptic currents. Finally, the ontogeny of ASIC1 in mouse brain revealed constant levels of expression of ASIC1 protein from embryonic day 12 to the postnatal period, indicating an early and almost constant level of expression of ASIC1 during brain development.


Journal of Biological Chemistry | 2003

Transforming Growth Factor-β1 Decreases Expression of the Epithelial Sodium Channel αENaC and Alveolar Epithelial Vectorial Sodium and Fluid Transport via an ERK1/2-dependent Mechanism

James A. Frank; Jérémie Roux; Hisaaki Kawakatsu; George Su; André Dagenais; Yves Berthiaume; Marybeth Howard; Cecilia M. Canessa; Xiaohui Fang; Dean Sheppard; Michael A. Matthay; Jean-Francois Pittet

Acute lung injury (ALI) is characterized by the flooding of the alveolar airspaces with protein-rich edema fluid and diffuse alveolar damage. We have previously reported that transforming growth factor-β1 (TGF-β1) is a critical mediator of ALI after intratracheal administration of bleomycin or Escherichia coli endotoxin, at least in part due to effects on lung endothelial and alveolar epithelial permeability. In the present study, we hypothesized that TGF-β1 would also decrease vectorial ion and water transport across the distal lung epithelium. Therefore, we studied the effect of active TGF-β1 on 22Na+ uptake across monolayers of primary rat and human alveolar type II (ATII) cells. TGF-β1 significantly reduced the amiloride-sensitive fraction of 22Na+ uptake and fluid transport across monolayers of both rat and human ATII cells. TGF-β1 also significantly decreased αENaC mRNA and protein expression and inhibited expression of a luciferase reporter downstream of the αENaC promoter in lung epithelial cells. The inhibitory effect of TGF-β1 on sodium uptake and αENaC expression in ATII cells was mediated by activation of the MAPK, ERK1/2. Consistent with the in vitro results, TGF-β1 inhibited the amiloride-sensitive fraction of the distal airway epithelial fluid transport in an in vivo rat model at a dose that was not associated with any change in epithelial protein permeability. These data indicate that increased TGF-β1 activity in the distal airspaces during ALI promotes alveolar edema by reducing distal airway epithelial sodium and fluid clearance. This reduction in sodium and fluid transport is attributable in large part to a reduction in apical membrane αENaC expression mediated through an ERK1/2-dependent inhibition of the αENaC promoter activity.


The Journal of General Physiology | 2002

Effects of Aldosterone on Biosynthesis, Traffic, and Functional Expression of Epithelial Sodium Channels in A6 Cells

Diego de la Rosa; Hui Li; Cecilia M. Canessa

The collecting duct regulates Na+ transport by adjusting the abundance/activity of epithelial Na+ channels (ENaC). In this study we have investigated the synthesis, degradation, endocytosis, and activity of ENaC and the effects of aldosterone on these processes using endogenous channels expressed in the A6 cell line. Biochemical studies were performed with a newly raised set of specific antibodies against each of the three subunits of the amphibian ENaC. Our results indicate simultaneous transcription and translation of α, β, and γ subunits and enhancement of both processes by aldosterone: two- and fourfold increase, respectively. The biosynthesis of new channels can be followed by acquisition of endoglycosidase H–resistant oligosacharides in α and β subunits and, in the case of α, by the appearance of a form resistant to reducing agents. The half-life of the total pool of subunits (t 1/2 40–70 min) is longer than the fraction of channels in the apical membrane (t 1/2 12–17 min). Aldosterone induces a fourfold increase in the abundance of the three subunits in the apical membrane without significant changes in the open probability, kinetics of single channels, or in the rate of degradation of ENaC subunits. Accordingly, the aldosterone response could be accounted by an increase in the abundance of apical channels due, at least in part, to de novo synthesis of subunits.


Journal of Biological Chemistry | 1998

BIOSYNTHESIS AND PROCESSING OF EPITHELIAL SODIUM CHANNELS IN XENOPUS OOCYTES

Jack A. Valentijn; Gregor K. Fyfe; Cecilia M. Canessa

The epithelial sodium channel (ENaC) provides the rate-limiting step in the reabsorption of sodium by many epithelia. The number of channels at the cell surface is tightly regulated; most cells express only a few channels. We have examined the biosynthesis and cell surface expression of ENaC in Xenopus oocytes. The subunits of ENaC are readily synthesized in the endoplasmic reticulum, but most of them remain as immature proteins in pre-Golgi compartments, where they are degraded by the proteasomal pathway without apparent ubiquitination. Even when the three subunits, α, β, and γ, are expressed in the same cell, only a very small fraction of the total channel population leave the endoplasmic reticulum, acquire complex oligosaccharides, and reach the plasma membrane. Overexpression of subunits does not increase the number of channels in the plasma membrane but results in the appearance of cytoplasmic subunits in a form not membrane bound. The data indicate that maturation and assembly of the subunits are slow and inefficient processes, and constitute limiting steps for the expression of functional ENaC channels in the plasma membrane.


Journal of Biological Chemistry | 2009

Interaction of the Aromatics Tyr-72/Trp-288 in the Interface of the Extracellular and Transmembrane Domains Is Essential for Proton Gating of Acid-sensing Ion Channels

Tianbo Li; Youshan Yang; Cecilia M. Canessa

Acid-sensing ion channels are proton-activated ion channels expressed in the nervous system. They belong to the family of ENaC/Degenerins whose members share a conserved structure but are activated by widely diverse stimuli. We show that interaction of two aromatic residues, Tyr-72, located immediately after the first transmembrane segment, and Trp-288, located at the tip of a loop of the extracellular domain directed toward the first transmembrane segment, is essential for proton activation of the acid-sensing ion channels. The subdomain containing Trp-288 is a module tethered to the rest of the extracellular domain by short linkers and intrasubunit interactions between residues in the putative “proton sensor.” Mutations in these two areas shift the apparent affinity of protons toward a more acidic range and change the kinetics of activation and desensitization. These results are consisting with displacement of the module relative to the rest of the extracellular domain to allow interaction of Trp-288 with Tyr-72 during gating. We propose that such interaction may provide functional coupling between the extracellular domain and the pore domain.


The Journal of General Physiology | 2002

Single Channel Properties of Rat Acid–sensitive Ion Channel-1α, -2a, and -3 Expressed in Xenopus Oocytes

Ping Zhang; Cecilia M. Canessa

The mammalian nervous system expresses proton-gated ion channels known as acid-sensing ion channels (ASICs). Depending on their location and specialization some neurons express more than one type of ASIC where they may form homo- or heteromeric channels. Macroscopic characteristics of the ASIC currents have been described, but little is known at the single channel level. Here, we have examined the properties of unitary currents of homomeric rat ASIC1α, ASIC2a, and ASIC3 expressed in Xenopus oocytes with the patch clamp technique. We describe and characterize properties unique to each of these channels that can be used to distinguish the various types of ASIC channels expressed in mammalian neurons. The amplitudes of the unitary currents in symmetrical Na+ are similar for the three types of channels (23–18 pS) and are not voltage dependent. However, ASIC1α exhibits three subconductance states, ASIC2a exhibits only one, and ASIC3 none. The kinetics of the three types of channels are different: ASIC1α and ASIC2a shift between modes of activity, each mode has different open probability and kinetics. In contrast, the kinetics of ASIC3 are uniform throughout the burst of activity. ASIC1α, ASIC2a, and ASIC3 are activated by external protons with apparent pH50 of 5.9, 5.0, and 5.4, respectively. Desensitization in the continual presence of protons is fast and complete in ASIC1α and ASIC3 (2.0 and 4.5 s−1, respectively) but slow and only partial in ASIC2a (0.045 s−1). The response to external Ca2+ also differs: μM concentrations of extracellular Ca2+ are necessary for proton gating of ASIC3 (EC50 = 0.28 μM), whereas ASIC1α and ASIC2a do not require Ca2+. In addition, Ca2+ inhibits ASIC1α (KD = 9.2 ± 2 mM) by several mechanisms: decrease in the amplitude of unitary currents, shortening of the burst of activity, and decrease in the number of activated channels. Contrary to previous reports, our results indicate that the Ca2+ permeability of ASIC1α is very small.

Collaboration


Dive into the Cecilia M. Canessa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge