Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cecilia O'Kane is active.

Publication


Featured researches published by Cecilia O'Kane.


Clinical and Experimental Immunology | 2005

The paradox of matrix metalloproteinases in infectious disease.

Paul T. Elkington; Cecilia O'Kane; Jon S. Friedland

Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that perform multiple roles in the normal immune response to infection. MMPs facilitate leucocyte recruitment, cytokine and chemokine processing, defensin activation and matrix remodelling. However, excess MMP activity following infection may lead to immunopathology that causes host morbidity or mortality and favours pathogen dissemination or persistence. Here, we review the normal functions of MMPs in immunity and then discuss viral and bacterial infections where excess MMP activity has been implicated in pathology, specifically examining HIV, HTLV‐1, hepatitis B, endotoxin shock, Helicobacter pylori and Mycobacterium tuberculosis. Tissue destruction may be exacerbated further by bacterial‐derived enzymes which activate the host pro‐MMPs. Finally, the potential for therapeutic targeting of excess MMP activity in infection is considered.


American Journal of Respiratory and Critical Care Medicine | 2009

Simvastatin decreases lipopolysaccharide-induced pulmonary inflammation in healthy volunteers.

Murali Shyamsundar; Scott McKeown; Cecilia O'Kane; Thelma Craig; Vanessa Brown; David R Thickett; Michael A. Matthay; Clifford C. Taggart; Janne T. Backman; J. Stuart Elborn; Daniel F. McAuley

RATIONALE Simvastatin inhibits inflammatory responses in vitro and in murine models of lung inflammation in vivo. As simvastatin modulates a number of the underlying processes described in acute lung injury (ALI), it may be a potential therapeutic option. OBJECTIVES To investigate in vivo if simvastatin modulates mechanisms important in the development of ALI in a model of acute lung inflammation induced by inhalation of lipopolysaccharide (LPS) in healthy human volunteers. METHODS Thirty healthy subjects were enrolled in a double-blind, placebo-controlled study. Subjects were randomized to receive 40 mg or 80 mg of simvastatin or placebo (n = 10/group) for 4 days before inhalation of 50 microg LPS. Measurements were performed in bronchoalveolar lavage fluid (BALF) obtained at 6 hours and plasma obtained at 24 hours after LPS challenge. Nuclear translocation of nuclear factor-kappaB (NF-kappaB) was measured in monocyte-derived macrophages. MEASUREMENTS AND MAIN RESULTS Pretreatment with simvastatin reduced LPS-induced BALF neutrophilia, myeloperoxidase, tumor necrosis factor-alpha, matrix metalloproteinases 7, 8, and 9, and C-reactive protein (CRP) as well as plasma CRP (all P < 0.05 vs. placebo). There was no significant difference between simvastatin 40 mg and 80 mg. BALF from subjects post-LPS inhalation induced a threefold up-regulation in nuclear NF-kappaB in monocyte-derived macrophages (P < 0.001); pretreatment with simvastatin reduced this by 35% (P < 0.001). CONCLUSIONS Simvastatin has antiinflammatory effects in the pulmonary and systemic compartment in humans exposed to inhaled LPS.


American Journal of Respiratory and Critical Care Medicine | 2011

A randomized clinical trial of hydroxymethylglutaryl- coenzyme a reductase inhibition for acute lung injury (The HARP Study).

Thelma Craig; Martin J. Duffy; Murali Shyamsundar; Cliona McDowell; Cecilia O'Kane; J. Stuart Elborn; Daniel F. McAuley

RATIONALE There is no effective pharmacological treatment for acute lung injury (ALI). Statins are a potential new therapy because they modify many of the underlying processes important in ALI. OBJECTIVES To test whether simvastatin improves physiological and biological outcomes in ALI. METHODS We conducted a randomized, double-blinded, placebo-controlled trial in patients with ALI. Patients received 80 mg simvastatin or placebo until cessation of mechanical ventilation or up to 14 days. Extravascular lung water was measured using thermodilution. Measures of pulmonary and nonpulmonary organ function were assessed daily. Pulmonary and systemic inflammation was assessed by bronchoalveolar lavage fluid and plasma cytokines. Systemic inflammation was also measured by plasma C-reactive protein. MEASUREMENTS AND MAIN RESULTS Sixty patients were recruited. Baseline characteristics, including demographics and severity of illness scores, were similar in both groups. At Day 7, there was no difference in extravascular lung water. By Day 14, the simvastatin-treated group had improvements in nonpulmonary organ dysfunction. Oxygenation and respiratory mechanics improved, although these parameters failed to reach statistical significance. Intensive care unit mortality was 30% in both groups. Simvastatin was well tolerated, with no increase in adverse events. Simvastatin decreased bronchoalveolar lavage IL-8 by 2.5-fold (P = 0.04). Plasma C-reactive protein decreased in both groups but failed to achieve significance in the placebo-treated group. CONCLUSIONS Treatment with simvastatin appears to be safe and may be associated with an improvement in organ dysfunction in ALI. These clinical effects may be mediated by a reduction in pulmonary and systemic inflammation. Clinical trial registered with www.controlled-trials.com (ISRCTN70127774).


European Respiratory Journal | 2009

MMP expression and abnormal lung permeability are important determinants of outcome in IPF

Scott T. McKeown; Alex Richter; Cecilia O'Kane; Daniel F. McAuley; David R Thickett

Matrix metalloproteinases (MMPs) degrade all of the extracellular matrix components of the intersititium and may play a role in abnormal alveolar permeability, which is a feature of idiopathic pulmonary fibrosis (IPF). The aims of the present study were to evaluate MMP protein levels in patients with IPF and determine any relationship to treatment and markers of permeability. In total, 20 patients with IPF and eight normal controls underwent bronchoalveolar lavage. MMP, tissue inhibitor of metalloproteinase, and vascular endothelial growth factor (VEGF) levels were related to clinical outcome and protein permeability index. MMP-3, -7, -8 and -9 were elevated in IPF lavage fluid and levels remained high despite treatment. Levels of MMP-3, -7, -8 and -9, VEGF and protein permeability index were higher in those who died early during follow-up. VEGF, and MMP-8 and -9 levels were higher in those with a rapidly declining lung function over 1 yr. Levels of MMP-3, -7, -8 and -9 correlated with an increased permeability index. Matrix metalloproteinase levels were elevated in idiopathic pulmonary fibrosis patients and were not modulated by current standard treatment. Matrix metalloproteinase production through an interaction with the known vascular permogen, vascular endothelial growth factor, was potentially associated with abnormal capillary permeability and may have potentiated the neo-angiogenesis seen in idiopathic pulmonary fibrosis. The changes were greatest in those who died or progressed during follow-up, suggesting that drugs targeting vascular endothelial growth factor or matrix metalloproteinase activity warrant assessment as novel therapy for idiopathic pulmonary fibrosis.


Journal of Immunology | 2005

Mycobacterium tuberculosis Up-Regulates Matrix Metalloproteinase-1 Secretion from Human Airway Epithelial Cells via a p38 MAPK Switch

Paul T. Elkington; Jenny E. Emerson; Laura D. Lopez-Pascua; Cecilia O'Kane; Donna Horncastle; Joseph J. Boyle; Jon S. Friedland

Pulmonary cavitation is vital to the persistence and spread of Mycobacterium tuberculosis (MTb), but mechanisms underlying this lung destruction are poorly understood. Fibrillar type I collagen provides the lung’s tensile strength, and only matrix metalloproteinases (MMPs) can degrade it at neutral pH. We investigated MTb-infected lung tissue and found that airway epithelial cells adjacent to tuberculosis (Tb) granulomas expressed a high level of MMP-1 (interstitial collagenase). Conditioned media from MTb-infected monocytes (CoMTb) up-regulated epithelial cell MMP-1 promoter activity, gene expression, and secretion, whereas direct MTb infection did not. CoMTb concurrently suppressed tissue inhibitor of metalloprotease-1 (TIMP-1) secretion, further promoting matrix degradation, and in Tb patients very low TIMP-1 expression was detected. MMP-1 up-regulation required synergy between TNF-α and G protein-coupled receptor signaling pathways. CoMTb stimulated p38 MAPK phosphorylation, and this is the point of TNF-α synergy with G protein-coupled receptor activation. Furthermore, p38 phosphorylation was the switch up-regulating MMP-1 activity and decreasing TIMP-1 secretion. Activated p38 localized to MMP-1-secreting airway epithelial cells in Tb patients. These data reveal a monocyte-epithelial cell network whereby MTb may drive tissue destruction, and they demonstrate that p38 phosphorylation is a key regulatory point in the generation of a matrix-degrading phenotype.


European Respiratory Journal | 2011

Matrix Metalloproteinases in Acute Lung Injury: mediators of injury and drivers of repair

A. Davey; Daniel F. McAuley; Cecilia O'Kane

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) comprise a spectrum of acute inflammatory pulmonary oedema resulting in refractory hypoxaemia in the absence of an underlying cardiogenic cause. There are multiple pulmonary and extrapulmonary causes and ALI/ARDS patients are a clinically heterogeneous group with associated high morbidity and mortality. Inflammatory injury to the alveolar epithelial and endothelial capillary membrane is a central event in the pathogenesis of ALI/ARDS, and involves degradation of the basement membrane. Matrix metalloproteinases (MMPs) have been implicated in a wide variety of pulmonary pathologies and are capable of degrading all components of the extracellular matrix including the basement membrane and key non-matrix mediators of lung injury such as chemokines and cell surface receptors. While many studies implicate MMPs in the injurious process, there are significant gaps in our knowledge of the role of specific proteases at different phases of injury and repair. This article examines the role of MMPs in injury and repair of the alveolar epithelial–endothelial capillary barrier and discusses the potential for MMP modulation in the prevention and treatment of ALI. The need for further mechanistic and in vivo studies to inform appropriate subsequent clinical trials of MMP modulation will be highlighted.


Critical Care Medicine | 2009

Salbutamol up-regulates matrix metalloproteinase-9 in the alveolar space in the acute respiratory distress syndrome.

Cecilia O'Kane; Scott McKeown; Gavin D. Perkins; Chris R. Bassford; Fang Gao; David R Thickett; Daniel F. McAuley

Objectives: Acute respiratory distress syndrome (ARDS) is characterized by alveolar-capillary barrier damage. Matrix metalloproteinases (MMPs) are implicated in the pathogenesis of ARDS. In the Beta Agonists in Acute Lung Injury Trial, intravenous salbutamol reduced extravascular lung water (EVLW) in patients with ARDS at day 4 but not inflammatory cytokines or neutrophil recruitment. We hypothesized that salbutamol reduces MMP activity in ARDS. Methods: MMP-1/-2/-3/-7/-8/-9/-12/-13 was measured in supernatants of distal lung epithelial cells, type II alveolar cells, and bronchoalveolar lavage (BAL) fluid from patients in the Beta Agonists in Acute Lung Injury study by multiplex bead array and tissue inhibitors of metalloproteinases (TIMPs)-1/-2 by enzyme-linked immunosorbent assay. MMP-9 protein and activity levels were further measured by gelatin zymography and fluorokine assay. Measurements and Main Results: BAL fluid MMP-1/-2/-3 declined by day 4, whereas total MMP-9 tended to increase. Unexpectedly, salbutamol augmented MMP-9 activity. Salbutamol induced 33.7- and 13.2-fold upregulation in total and lipocalin-associated MMP-9, respectively at day 4, compared with 2.0- and 1.3-fold increase in the placebo group, p < 0.03. Salbutamol did not affect BAL fluid TIMP-1/-2. Net active MMP-9 was higher in the salbutamol group (4222 pg/mL, interquartile range: 513-7551) at day 4 compared with placebo (151 pg/mL, 124-2108), p = 0.012. Subjects with an increase in BAL fluid MMP-9 during the 4-day period had lower EVLW measurements than those in whom MMP-9 fell (10 vs. 17 mL/kg, p = 0.004): change in lung water correlated inversely with change in MMP-9, r = −.54, p = 0.0296. Salbutamol up-regulated MMP-9 and down-regulated TIMP-1/-2 secretion in vitro by distal lung epithelial cells. Inhibition of MMP-9 activity in cultures of type II alveolar epithelial cells reduced wound healing. Conclusions: Salbutamol specifically up-regulates MMP-9 in vitro and in vivo in patients with ARDS. Up-regulated MMP-9 is associated with a reduction in EVLW. MMP-9 activity is required for alveolar epithelial wound healing in vitro. Data suggest MMP-9 may have a previously unrecognized beneficial role in reducing pulmonary edema in ARDS by improving alveolar epithelial healing.


Stem Cells | 2016

Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS

Megan Jackson; Thomas Morrison; Declan Doherty; Daniel F. McAuley; Michael A. Matthay; Adrien Kissenpfennig; Cecilia O'Kane; Anna Krasnodembskaya

Mesenchymal stromal cells (MSC) have been reported to improve bacterial clearance in preclinical models of Acute Respiratory Distress Syndrome (ARDS) and sepsis. The mechanism of this effect is not fully elucidated yet. The primary objective of this study was to investigate the hypothesis that the antimicrobial effect of MSC in vivo depends on their modulation of macrophage phagocytic activity which occurs through mitochondrial transfer. We established that selective depletion of alveolar macrophages (AM) with intranasal (IN) administration of liposomal clodronate resulted in complete abrogation of MSC antimicrobial effect in the in vivo model of Escherichia coli pneumonia. Furthermore, we showed that MSC administration was associated with enhanced AM phagocytosis in vivo. We showed that direct coculture of MSC with monocyte‐derived macrophages enhanced their phagocytic capacity. By fluorescent imaging and flow cytometry we demonstrated extensive mitochondrial transfer from MSC to macrophages which occurred at least partially through tunneling nanotubes (TNT)‐like structures. We also detected that lung macrophages readily acquire MSC mitochondria in vivo, and macrophages which are positive for MSC mitochondria display more pronounced phagocytic activity. Finally, partial inhibition of mitochondrial transfer through blockage of TNT formation by MSC resulted in failure to improve macrophage bioenergetics and complete abrogation of the MSC effect on macrophage phagocytosis in vitro and the antimicrobial effect of MSC in vivo. Collectively, this work for the first time demonstrates that mitochondrial transfer from MSC to innate immune cells leads to enhancement in phagocytic activity and reveals an important novel mechanism for the antimicrobial effect of MSC in ARDS. Stem Cells 2016;34:2210–2223


American Journal of Respiratory Cell and Molecular Biology | 2010

STAT3, p38 MAPK, and NF-κB Drive Unopposed Monocyte-Dependent Fibroblast MMP-1 Secretion in Tuberculosis

Cecilia O'Kane; Paul T. Elkington; Michael D. Jones; Luz Caviedes; Marco A. Tovar; Robert H. Gilman; Gordon Stamp; Jon S. Friedland

Tissue destruction characterizes infection with Mycobacterium tuberculosis (Mtb). Type I collagen provides the lungs tensile strength, is extremely resistant to degradation, but is cleaved by matrix metalloproteinase (MMP)-1. Fibroblasts potentially secrete quantitatively more MMP-1 than other lung cells. We investigated mechanisms regulating Mtb-induced collagenolytic activity in fibroblasts in vitro and in patients. Lung fibroblasts were stimulated with conditioned media from Mtb-infected monocytes (CoMTb). CoMTb induced sustained increased MMP-1 (74 versus 16 ng/ml) and decreased tissue inhibitor of metalloproteinase (TIMP)-1 (8.6 versus 22.3 ng/ml) protein secretion. CoMTb induced a 2.7-fold increase in MMP-1 promoter activation and a 2.5-fold reduction in TIMP-1 promoter activation at 24 hours (P = 0.01). Consistent with this, TIMP-1 did not co-localize with fibroblasts in patient granulomas. MMP-1 up-regulation and TIMP-1 down-regulation were p38 (but not extracellular signal-regulated kinase or c-Jun N-terminal kinase) mitogen-activated protein kinase-dependent. STAT3 phosphorylation was detected in fibroblasts in vitro and in tuberculous granulomas. STAT3 inhibition reduced fibroblast MMP-1 secretion by 60% (P = 0.046). Deletion of the MMP-1 promoter NF-κB-binding site abrogated promoter induction in response to CoMTb. TNF-α, IL-1β, or Oncostatin M inhibition in CoMTb decreased MMP-1 secretion by 65, 63, and 25%, respectively. This cytokine cocktail activated the same signaling pathways in fibroblasts and induced MMP-1 secretion similar to that induced by CoMTb. This study demonstrates in a cellular model and in patients with tuberculosis that in addition to p38 and NF-κB, STAT3 has a key role in driving fibroblast-dependent unopposed MMP-1 production that may be key in tissue destruction in patients.


American Journal of Respiratory and Critical Care Medicine | 2014

Keratinocyte Growth Factor Promotes Epithelial Survival and Resolution in a Human Model of Lung Injury

Murali Shyamsundar; Daniel F. McAuley; Rebecca J. Ingram; David Gibson; Donal O'Kane; Scott T. McKeown; Alexander J.P. Edwards; Cliff Taggart; J.S. Elborn; Carolyn S. Calfee; Michael A. Matthay; Cecilia O'Kane

RATIONALE Increasing epithelial repair and regeneration may hasten resolution of lung injury in patients with the acute respiratory distress syndrome (ARDS). In animal models of ARDS, keratinocyte growth factor (KGF) reduces injury and increases epithelial proliferation and repair. The effect of KGF in the human alveolus is unknown. OBJECTIVES To test whether KGF can attenuate alveolar injury in a human model of ARDS. METHODS Volunteers were randomized to intravenous KGF (60 μg/kg) or placebo for 3 days, before inhaling 50 μg LPS. Six hours later, subjects underwent bronchoalveolar lavage (BAL) to quantify markers of alveolar inflammation and cell-specific injury. MEASUREMENTS AND MAIN RESULTS KGF did not alter leukocyte infiltration or markers of permeability in response to LPS. KGF increased BAL concentrations of surfactant protein D, matrix metalloproteinase (MMP)-9, IL-1Ra, granulocyte-macrophage colony-stimulating factor (GM-CSF), and C-reactive protein. In vitro, BAL fluid from KGF-treated subjects inhibited pulmonary fibroblast proliferation, but increased alveolar epithelial proliferation. Active MMP-9 increased alveolar epithelial wound repair. Finally, BAL from the KGF-pretreated group enhanced macrophage phagocytic uptake of apoptotic epithelial cells and bacteria compared with BAL from the placebo-treated group. This effect was blocked by inhibiting activation of the GM-CSF receptor. CONCLUSIONS KGF treatment increases BAL surfactant protein D, a marker of type II alveolar epithelial cell proliferation in a human model of acute lung injury. Additionally, KGF increases alveolar concentrations of the antiinflammatory cytokine IL-1Ra, and mediators that drive epithelial repair (MMP-9) and enhance macrophage clearance of dead cells and bacteria (GM-CSF). Clinical trial registered with ISRCTN 98813895.

Collaboration


Dive into the Cecilia O'Kane's collaboration.

Top Co-Authors

Avatar

Daniel F. McAuley

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Morrison

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Umar Hamid

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge