Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cecilia Pozzi is active.

Publication


Featured researches published by Cecilia Pozzi.


Journal of the American Chemical Society | 2012

Structural insights into the ferroxidase site of ferritins from higher eukaryotes.

Ivano Bertini; Daniela Lalli; Stefano Mangani; Cecilia Pozzi; Camilla Rosa; Elizabeth C. Theil; Paola Turano

The first step of iron biomineralization mediated by ferritin is the oxidation at the ferroxidase active site of two ferrous ions to a diferric oxo/hydroxo species. Metal-loaded ferritin crystals obtained by soaking crystals of frog ferritin in FeSO(4) and CuSO(4) solutions followed by flash freezing provided X-ray crystal structures of the tripositive iron and bipositive copper adducts at 2.7 and 2.8 Å resolution, respectively. At variance with the already available structures, the crystal form used in this study contains 24 independent subunits in the asymmetric unit permitting comparison between them. For the first time, the diferric species at the ferroxidase site is identified in ferritins from higher eukaryotes. Anomalous difference Fourier maps for crystals (iron crystal 1) obtained after long soaking times in FeSO(4) solution invariantly showed diferric species with a Fe-Fe average distance of 3.1 ± 0.1 Å, strongly indicative of the presence of a μ-oxo/hydroxo bridge between the irons; protein ligands for each iron ion (Fe1 and Fe2) were also unequivocally identified and found to be the same in all subunits. For copper bound ferritin, dicopper(II) centers are also observed. While copper at site 1 is essentially in the same position and has the same coordination environment as Fe1, copper at site 2 is displaced toward His54, now acting as a ligand; this results in an increased intermetal distance (4.3 ± 0.4 Å). His54 coordination and longer metal-metal distances might represent peculiar features of divalent cations at the ferroxidase site. This oxidation-dependent structural information may provide key features for the mechanistic pathway in ferritins from higher eukaryotes that drive uptake of bivalent cation and release of ferric products at the catalytic site. This mechanism is supported by the X-ray picture obtained after only 1 min of soaking in FeSO(4) solutions (iron crystal 2) which reasonably contain the metal at different oxidation states. Here two different di-iron species are trapped in the active site, with intermetal distances corresponding to those of the ferric dimer in crystal 1 and of the dicopper centers and corresponding rearrangement of the His54 side chain.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Protein–protein interface-binding peptides inhibit the cancer therapy target human thymidylate synthase

D. Cardinale; Giambattista Guaitoli; Donatella Tondi; Rosaria Luciani; Stefan Henrich; Outi M. H. Salo-Ahen; Stefania Ferrari; Gaetano Marverti; Davide Guerrieri; Alessio Ligabue; Chiara Frassineti; Cecilia Pozzi; Stefano Mangani; D. Fessas; Remo Guerrini; Glauco Ponterini; Rebecca C. Wade; Maria Paola Costi

Human thymidylate synthase is a homodimeric enzyme that plays a key role in DNA synthesis and is a target for several clinically important anticancer drugs that bind to its active site. We have designed peptides to specifically target its dimer interface. Here we show through X-ray diffraction, spectroscopic, kinetic, and calorimetric evidence that the peptides do indeed bind at the interface of the dimeric protein and stabilize its di-inactive form. The “LR” peptide binds at a previously unknown binding site and shows a previously undescribed mechanism for the allosteric inhibition of a homodimeric enzyme. It inhibits the intracellular enzyme in ovarian cancer cells and reduces cellular growth at low micromolar concentrations in both cisplatin-sensitive and -resistant cells without causing protein overexpression. This peptide demonstrates the potential of allosteric inhibition of hTS for overcoming platinum drug resistance in ovarian cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Evolution to carbapenem-hydrolyzing activity in noncarbapenemase class D β-lactamase OXA-10 by rational protein design

Filomena De Luca; Manuela Benvenuti; Filippo Carboni; Cecilia Pozzi; Gian Maria Rossolini; Stefano Mangani; Jean Denis Docquier

Class D β-lactamases with carbapenemase activity are emerging as carbapenem-resistance determinants in Gram-negative bacterial pathogens, mostly Acinetobacter baumannii and Klebsiella pneumoniae. Carbapenemase activity is an unusual feature among class D β-lactamases, and the structural elements responsible for this activity remain unclear. Based on structural and molecular dynamics data, we previously hypothesized a potential role of the residues located in the short-loop connecting strands β5 and β6 (the β5–β6 loop) in conferring the carbapenemase activity of the OXA-48 enzyme. In this work, the narrow-spectrum OXA-10 class D β-lactamase, which is unable to hydrolyze carbapenems, was used as a model to investigate the possibility of evolving carbapenemase activity by replacement of the β5–β6 loop with those present in three different lineages of class D carbapenemases (OXA-23, OXA-24, and OXA-48). Biological assays and kinetic measurements showed that all three OXA-10–derived hybrids acquired significant carbapenemase activity. Structural analysis of the OXA-10loop24 and OXA-10loop48 hybrids revealed no significant changes in the molecular fold of the enzyme, except for the orientation of the substituted β5–β6 loops, which was reminiscent of that found in their parental enzymes. These results demonstrate the crucial role of the β5–β6 loop in the carbapenemase activity of class D β-lactamases, and provide previously unexplored insights into the mechanism by which these enzymes can evolve carbapenemase activity.


Acta Crystallographica Section D-biological Crystallography | 2015

Iron binding to human heavy-chain ferritin.

Cecilia Pozzi; Flavio Di Pisa; Caterina Bernacchioni; Silvia Ciambellotti; Paola Turano; Stefano Mangani

Maxi-ferritins are ubiquitous iron-storage proteins with a common cage architecture made up of 24 identical subunits of five α-helices that drive iron biomineralization through catalytic iron(II) oxidation occurring at oxidoreductase sites (OS). Structures of iron-bound human H ferritin were solved at high resolution by freezing ferritin crystals at different time intervals after exposure to a ferrous salt. Multiple binding sites were identified that define the iron path from the entry ion channels to the oxidoreductase sites. Similar data are available for another vertebrate ferritin: the M protein from Rana catesbeiana. A comparative analysis of the iron sites in the two proteins identifies new reaction intermediates and underlines clear differences in the pattern of ligands that define the additional iron sites that precede the oxidoreductase binding sites along this path. Stopped-flow kinetics assays revealed that human H ferritin has different levels of activity compared with its R. catesbeiana counterpart. The role of the different pattern of transient iron-binding sites in the OS is discussed with respect to the observed differences in activity across the species.


Acta Crystallographica Section D-biological Crystallography | 2015

Time-lapse anomalous X-ray diffraction shows how Fe(2+) substrate ions move through ferritin protein nanocages to oxidoreductase sites.

Cecilia Pozzi; Flavio Di Pisa; Daniela Lalli; Camilla Rosa; Elizabeth C. Theil; Paola Turano; Stefano Mangani

Ferritin superfamily protein cages reversibly synthesize internal biominerals, Fe2O3·H2O. Fe(2+) and O2 (or H2O2) substrates bind at oxidoreductase sites in the cage, initiating biomineral synthesis to concentrate iron and prevent potentially toxic reactions products from Fe(2+)and O2 or H2O2 chemistry. By freezing ferritin crystals of Rana catesbeiana ferritin M (RcMf) at different time intervals after exposure to a ferrous salt, a series of high-resolution anomalous X-ray diffraction data sets were obtained that led to crystal structures that allowed the direct observation of ferrous ions entering, moving along and binding at enzyme sites in the protein cages. The ensemble of crystal structures from both aerobic and anaerobic conditions provides snapshots of the iron substrate bound at different cage locations that vary with time. The observed differential occupation of the two iron sites in the enzyme oxidoreductase centre (with Glu23 and Glu58, and with Glu58, His61 and Glu103 as ligands, respectively) and other iron-binding sites (with Glu53, His54, Glu57, Glu136 and Asp140 as ligands) reflects the approach of the Fe(2+) substrate and its progression before the enzymatic cycle 2Fe(2+) + O2 → Fe(3+)-O-O-Fe(3+) → Fe(3+)-O(H)-Fe(3+) and turnover. The crystal structures also revealed different Fe(2+) coordination compounds bound to the ion channels located at the threefold and fourfold symmetry axes of the cage.


ACS Chemical Biology | 2014

Loop Electrostatics Modulates the Intersubunit Interactions in Ferritin

Caterina Bernacchioni; Veronica Ghini; Cecilia Pozzi; Flavio Di Pisa; Elizabeth C. Theil; Paola Turano

Functional ferritins are 24-mer nanocages that self-assemble with extended contacts between pairs of 4-helix bundle subunits coupled in an antiparallel fashion along the C2 axes. The largest intersubunit interaction surface in the ferritin nanocage involves helices, but contacts also occur between groups of three residues midway in the long, solvent-exposed L-loops of facing subunits. The anchor points between intersubunit L-loop pairs are the salt bridges between the symmetry-related, conserved residues Asp80 and Lys82. The resulting quaternary structure of the cage is highly soluble and thermostable. Substitution of negatively charged Asp80 with a positively charged Lys in homopolymeric M ferritin introduces electrostatic repulsions that inhibit the oligomerization of the ferritin subunits. D80K ferritin was present in inclusion bodies under standard overexpressing conditions in E. coli, contrasting with the wild type protein. Small amounts of fully functional D80K nanocages formed when expression was slowed. The more positively charged surface results in a different solubility profile and D80K crystallized in a crystal form with a low density packing. The 3D structure of D80K variant is the same as wild type except for the side chain orientations of Lys80 and facing Lys82. When three contiguous Lys groups are introduced in D80KI81K ferritin variant the nanocage assembly is further inhibited leading to lower solubility and reduced thermal stability. Here, we demonstrate that the electrostatic pairing at the center of the L-loops has a specific kinetic role in the self-assembly of ferritin nanocages.


Journal of Medicinal Chemistry | 2014

Targeting Class A and C Serine β-Lactamases with a Broad-Spectrum Boronic Acid Derivative

Donatella Tondi; Alberto Venturelli; Richard Bonnet; Cecilia Pozzi; Brian K. Shoichet; Maria Paola Costi

Production of β-lactamases (BLs) is the most widespread resistance mechanism adopted by bacteria to fight β-lactam antibiotics. The substrate spectrum of BLs has become increasingly broad, posing a serious health problem. Thus, there is an urgent need for novel BL inhibitors. Boronic acid transition-state analogues are able to reverse the resistance conferred by class A and C BLs. We describe a boronic acid analogue possessing interesting and potent broad-spectrum activity vs class A and C serine-based BLs. Starting from benzo(b)thiophene-2-boronic acid (BZBTH2B), a nanomolar non-β-lactam inhibitor of AmpC that can potentiate the activity of a third-generation cephalosporin against AmpC-producing resistant bacteria, we designed a novel broad-spectrum nanomolar inhibitor of class A and C BLs. Structure-based drug design (SBDD), synthesis, enzymology data, and X-ray crystallography results are discussed. We clarified the inhibitor binding geometry responsible for broad-spectrum activity vs serine-active BLs using double mutant thermodynamic cycle studies.


Journal of Medicinal Chemistry | 2016

Profiling of Flavonol Derivatives for the Development of Antitrypanosomatidic Drugs

Chiara Borsari; Rosaria Luciani; Cecilia Pozzi; Ina Poehner; Stefan Henrich; Matteo Trande; Anabela Cordeiro-da-Silva; Nuno Santarém; Catarina Baptista; Annalisa Tait; Flavio Di Pisa; Lucia Dello Iacono; Giacomo Landi; Sheraz Gul; Markus Wolf; Maria Kuzikov; Bernhard Ellinger; Jeanette Reinshagen; Gesa Witt; Philip Gribbon; Manfred Kohler; Oliver Keminer; Birte Behrens; Luca Costantino; Paloma Tejera Nevado; Eugenia Bifeld; Julia Eick; Joachim Clos; Juan J. Torrado; María Jiménez-Antón

Flavonoids represent a potential source of new antitrypanosomatidic leads. Starting from a library of natural products, we combined target-based screening on pteridine reductase 1 with phenotypic screening on Trypanosoma brucei for hit identification. Flavonols were identified as hits, and a library of 16 derivatives was synthesized. Twelve compounds showed EC50 values against T. brucei below 10 μM. Four X-ray crystal structures and docking studies explained the observed structure-activity relationships. Compound 2 (3,6-dihydroxy-2-(3-hydroxyphenyl)-4H-chromen-4-one) was selected for pharmacokinetic studies. Encapsulation of compound 2 in PLGA nanoparticles or cyclodextrins resulted in lower in vitro toxicity when compared to the free compound. Combination studies with methotrexate revealed that compound 13 (3-hydroxy-6-methoxy-2-(4-methoxyphenyl)-4H-chromen-4-one) has the highest synergistic effect at concentration of 1.3 μM, 11.7-fold dose reduction index and no toxicity toward host cells. Our results provide the basis for further chemical modifications aimed at identifying novel antitrypanosomatidic agents showing higher potency toward PTR1 and increased metabolic stability.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Chemistry at the protein–mineral interface in L-ferritin assists the assembly of a functional (μ3-oxo)Tris[(μ2-peroxo)] triiron(III) cluster

Cecilia Pozzi; Silvia Ciambellotti; Caterina Bernacchioni; Flavio Di Pisa; Stefano Mangani; Paola Turano

Significance Iron is an essential element in biology but has limited bioavailability. Ferritins are 24-mer iron-storage nanocage proteins that concentrate iron in their inner compartment as a bioavailable iron oxide biomineral. In L-type subunits, abundant in ferritins from organs involved in long-term iron storage, the biomineralization has been proposed to proceed through nucleation events involving iron(II) oxidation at the inner cage surface. Here, we demonstrate the nature and structural features of these nucleation sites. Structures captured during iron uptake show that the formation of the iron biomineral proceeds via the assembly of a tri-nuclear iron cluster, anchored to the protein through glutamic acid side chains, and involving oxo and peroxo ligands that are produced during the iron(II) oxidation by dioxygen. X-ray structures of homopolymeric L-ferritin obtained by freezing protein crystals at increasing exposure times to a ferrous solution showed the progressive formation of a triiron cluster on the inner cage surface of each subunit. After 60 min exposure, a fully assembled (μ3-oxo)Tris[(μ2-peroxo)(μ2-glutamato-κO:κO′)](glutamato-κO)(diaquo)triiron(III) anionic cluster appears in human L-ferritin. Glu60, Glu61, and Glu64 provide the anchoring of the cluster to the protein cage. Glu57 shuttles incoming iron ions toward the cluster. We observed a similar metallocluster in horse spleen L-ferritin, indicating that it represents a common feature of mammalian L-ferritins. The structures suggest a mechanism for iron mineral formation at the protein interface. The functional significance of the observed patch of carboxylate side chains and resulting metallocluster for biomineralization emerges from the lower iron oxidation rate measured in the E60AE61AE64A variant of human L-ferritin, leading to the proposal that the observed metallocluster corresponds to the suggested, but yet unobserved, nucleation site of L-ferritin.


Journal of Medicinal Chemistry | 2015

Hotspots in an Obligate Homodimeric Anticancer Target. Structural and Functional Effects of Interfacial Mutations in Human Thymidylate Synthase

Outi M. H. Salo-Ahen; Anna Tochowicz; Cecilia Pozzi; D. Cardinale; Stefania Ferrari; Yap Boum; Stefano Mangani; Robert M. Stroud; Puneet Saxena; Hannu Myllykallio; Maria Paola Costi; Glauco Ponterini; Rebecca C. Wade

Human thymidylate synthase (hTS), a target for antiproliferative drugs, is an obligate homodimer. Single-point mutations to alanine at the monomer-monomer interface may enable the identification of specific residues that delineate sites for drugs aimed at perturbing the protein-protein interactions critical for activity. We computationally identified putative hotspot residues at the interface and designed mutants to perturb the intersubunit interaction. Dimer dissociation constants measured by a FRET-based assay range from 60 nM for wild-type hTS up to about 1 mM for single-point mutants and agree with computational predictions of the effects of these mutations. Mutations that are remote from the active site retain full or partial activity, although the substrate KM values were generally higher and the dimer was less stable. The lower dimer stability of the mutants can facilitate access to the dimer interface by small molecules and thereby aid the design of inhibitors that bind at the dimer interface.

Collaboration


Dive into the Cecilia Pozzi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Paola Costi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Stefania Ferrari

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosaria Luciani

University of Modena and Reggio Emilia

View shared research outputs
Researchain Logo
Decentralizing Knowledge