Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cedo Maksimovic is active.

Publication


Featured researches published by Cedo Maksimovic.


Journal of Hydraulic Research | 2005

The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part II—model development, calibration and verification

Dídia Covas; Ivan Stoianov; João F. Mano; Helena M. Ramos; Nigel Graham; Cedo Maksimovic

A state-of-the-art mathematical model has been developed to calculate hydraulic transients in pressurized polyethylene (PE) pipe systems. This hydraulic transient solver (HTS) incorporates additional terms to take into account unsteady friction and pipe-wall viscoelasticity. Numerical results obtained were compared with the classic waterhammer solution and with experimental data collected from a PE pipe-rig at Imperial College (London, UK). Unlike the classical model, the developed HTS is capable of accurately predicting transient pressure fluctuations in PE pipes, as well as circumferential strains in the pipe-wall. The major challenge was the distinction between frictional and mechanical dynamic effects. First, the HTS was calibrated and tested considering these two effects separately: if only unsteady friction was considered, a major disagreement between collected data and numerical results was observed; when only the viscoelastic effect was considered, despite the good agreement between data and numerical results, the calibrated creep function depended on the initial flow rate. In a second stage, the combination of these dynamic effects was analysed: creep was calibrated for laminar flow and used to test the solver for turbulent conditions, and a good agreement was observed. Finally, the HTS was tested using creep measured in a mechanical test, neglecting unsteady friction, and a good agreement was obtained.


Journal of Hydraulic Research | 2004

The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part I—experimental analysis and creep characterization

Dídia Covas; Ivan Stoianov; Helena M. Ramos; Nigel Graham; Cedo Maksimovic

The mechanical behaviour of the pipe material determines the pressure response of a fluid system during the occurrence of transient events. in viscoelastic pipes, typically made of polyethylene (pe), maximum or minimum transient pressures are rapidly attenuated and the overall pressure wave is delayed in time. this is a result of the retarded deformation of the pipe-wall. this effect has been observed in transient data collected in a high-density pe pipe-rig, at imperial college (london, uk). several transient tests were carried out to collect pressure and circumferential strain data. the pipe material presented a typical viscoelastic mechanical behaviour with a sudden pressure drop immediately after the fast valve closure, a major dissipation and dispersion of the pressure wave, and transient mechanical hysteresis. the creep-function of the pipe material was experimentally determined by creep tests, and, its order-of-magnitude was estimated based on pressure-strain data collected from the pipe-rig. a good agreement between the creep functions was observed. creep tests are important for the characterization of the viscoelastic behaviour of pe as a material; however, when pe is integrated in a pipe system, mechanical tests only provide an estimate of the actual mechanical behaviour of the pipe system. this is because creep depends on not only the molecular structure of the material and temperature but also on pipe axial and circumferential constraints and the stress-time history of the pipe system.


Environmental Monitoring and Assessment | 2009

Design of on-line river water quality monitoring systems using the entropy theory: a case study

Mohammad Karamouz; Amir Khajehzadeh Nokhandan; Reza Kerachian; Cedo Maksimovic

The design of a water quality monitoring network is considered as the main component of water quality management including selection of the water quality variables, location of sampling stations and determination of sampling frequencies. In this study, an entropy-based approach is presented for design of an on-line water quality monitoring network for the Karoon River, which is the largest and the most important river in Iran. In the proposed algorithm of design, the number and location of sampling sites and sampling frequencies are determined by minimizing the redundant information, which is quantified using the entropy theory. A water quality simulation model is also used to generate the time series of the concentration of water quality variables at some potential sites along the river. As several water quality variables are usually considered in the design of water quality monitoring networks, the pair-wise comparison is used to combine the spatial and temporal frequencies calculated for each water quality variable. After selecting the sampling frequencies, different components of a comprehensive monitoring system such as data acquisition, transmission and processing are designed for the study area, and technical characteristics of the on-line and off-line monitoring equipment are presented. Finally, the assessment for the human resources needs, as well as training and quality assurance programs are presented considering the existing resources in the study area. The results show that the proposed approach can be effectively used for the optimal design of the river monitoring systems.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2007

Simulation and spatio-temporal disaggregation of multi-site rainfall data for urban drainage applications

M.-L. Segond; Natasa Neokleous; Christos Makropoulos; Christian Onof; Cedo Maksimovic

Abstract For urban drainage and urban flood modelling applications, fine spatial and temporal rainfall resolution is required. Simulation methods are developed to overcome the problem of data limitations. Although temporal resolution higher than 10–20 minutes is not well suited for detailed rainfall—runoff modelling for urban drainage networks, in the absence of monitored data, longer time intervals can be used for master planning or similar purposes. A methodology is presented for temporal disaggregation and spatial distribution of hourly rainfall fields, tested on observations for a 10-year period at 16 raingauges in the urban catchment of Dalmuir (UK). Daily rainfall time series are simulated with a generalized linear model (GLM). Next, using a single-site disaggregation model, the daily data of the central gauge in the catchment are downscaled to an hourly time scale. This hourly pattern is then applied linearly in space to disaggregate the daily data into hourly rainfall at all sites. Finally, the spatial rainfall field is obtained using inverse distance weighting (IDW) to interpolate the data over the whole catchment. Results are satisfactory: at individual sites within the region the simulated data preserve properties that match the observed statistics to an acceptable level for practical purposes.


Urban Water Journal | 2004

Water hammer in pressurized polyethylene pipes: conceptual model and experimental analysis

Dídia Covas; Ivan Stoianov; Helena M. Ramos; Nigel Graham; Cedo Maksimovic; David Butler

This paper analyzes the dynamic effects of pipe wall viscoelasticity on hydraulic transients. These effects have been observed in transient data collected from two polyethylene (PE) pipe systems. The first is a 270 m pipeline, 50 mm diameter, at Imperial College London, and the second is the worlds longest experimental PE pipeline, 1.3 km long, 110 mm diameter, buried underground at Thames Water Utilities (London, UK). A mathematical model has been developed to calculate hydraulic transients in polyethylene pipe systems based on the assumption that the viscoelastic behaviour of pipe walls is linear. An additional term has been added to the continuity equation to describe the retarded deformation of the pipe wall and the resulting governing equations are solved by the Method of Characteristics. The numerical results are compared with both the classic elastic solution and with collected transient data. Good agreement between numerical results for the viscoelastic solution and observed data was obtained by fitting the creep function J(t). Unlike classic water hammer analysis, the developed mathematical model is capable of accurately predicting transient pressures in polyethylene pipes and the circumferential strains in the pipe walls.


Water Research | 2012

A database and model to support proactive management of sediment-related sewer blockages.

Juan Pablo Rodríguez; Neil McIntyre; Mario Díaz-Granados; Cedo Maksimovic

Due to increasing customer and political pressures, and more stringent environmental regulations, sediment and other blockage issues are now a high priority when assessing sewer system operational performance. Blockages caused by sediment deposits reduce sewer system reliability and demand remedial action at considerable operational cost. Consequently, procedures are required for identifying which parts of the sewer system are in most need of proactive removal of sediments. This paper presents an exceptionally long (7.5 years) and spatially detailed (9658 grid squares--0.03 km² each--covering a population of nearly 7.5 million) data set obtained from a customer complaints database in Bogotá (Colombia). The sediment-related blockage data are modelled using homogeneous and non-homogeneous Poisson process models. In most of the analysed areas the inter-arrival time between blockages can be represented by the homogeneous process, but there are a considerable number of areas (up to 34%) for which there is strong evidence of non-stationarity. In most of these cases, the mean blockage rate increases over time, signifying a continual deterioration of the system despite repairs, this being particularly marked for pipe and gully pot related blockages. The physical properties of the system (mean pipe slope, diameter and pipe length) have a clear but weak influence on observed blockage rates. The Bogotá case study illustrates the potential value of customer complaints databases and formal analysis frameworks for proactive sewerage maintenance scheduling in large cities.


Water Science and Technology | 2013

Radar–raingauge data combination techniques: a revision and analysis of their suitability for urban hydrology

Lipen Wang; Susana Ochoa-Rodriguez; N. Simões; Christian Onof; Cedo Maksimovic

The applicability of the operational radar and raingauge networks for urban hydrology is insufficient. Radar rainfall estimates provide a good description of the spatiotemporal variability of rainfall; however, their accuracy is in general insufficient. It is therefore necessary to adjust radar measurements using raingauge data, which provide accurate point rainfall information. Several gauge-based radar rainfall adjustment techniques have been developed and mainly applied at coarser spatial and temporal scales; however, their suitability for small-scale urban hydrology is seldom explored. In this paper a review of gauge-based adjustment techniques is first provided. After that, two techniques, respectively based upon the ideas of mean bias reduction and error variance minimisation, were selected and tested using as case study an urban catchment (∼8.65 km(2)) in North-East London. The radar rainfall estimates of four historical events (2010-2012) were adjusted using in situ raingauge estimates and the adjusted rainfall fields were applied to the hydraulic model of the study area. The results show that both techniques can effectively reduce mean bias; however, the technique based upon error variance minimisation can in general better reproduce the spatial and temporal variability of rainfall, which proved to have a significant impact on the subsequent hydraulic outputs. This suggests that error variance minimisation based methods may be more appropriate for urban-scale hydrological applications.


Urban Water | 2000

A framework linking urban park land use with pond water quality

I. Stoianov; S. Chapra; Cedo Maksimovic

Abstract In recent years there has been a decline in water quality in many urban lakes and ponds. We have developed a practical management and planning modelling framework, linking park land use with resulting pond water quality. This framework has a map-centric management structure, in which Geographic Information Systems (GIS) interact with the developed watershed and pond water quality models. The lakes of Hyde Park and Kensington Gardens in London were used as a case study. A diagnostic study was conducted to quantify the hydrological and nutrient inputs to the lakes and a sediment-water quality model was applied to simulate the impact of different scenarios on the effect of reductions of phosphorus inputs to the lake on in-lake concentrations. As a result it is recommended that residence time of water in the lakes should be diminished, together with long-term reduction in the population of waterfowl.


Water Science and Technology | 2010

Sediment and pollutant load modelling using an integrated urban drainage modelling toolbox: an application of City Drain

Juan Pablo Rodríguez; Stefan Achleitner; M. Möderl; Wolfgang Rauch; Cedo Maksimovic; Neil McIntyre; Mario Díaz-Granados; Manuel S. Rodríguez

Numerical and computational modelling of flow and pollutant dynamics in urban drainage systems is becoming more and more integral to planning and design. The main aim of integrated flow and pollutant models is to quantify the efficiency of different measures at reducing the amount of pollutants discharged into receiving water bodies and minimise the consequent negative water quality impact. The open source toolbox CITY DRAIN developed in the Matlab/Simulink environment, which was designed for integrated modelling of urban drainage systems, is used in this work. The goal in this study was to implement and test computational routines for representing sediment and pollutant loads in order to evaluate catchment surface pollution. Tested models estimate the accumulation, erosion and transport of pollutants--aggregately--on urban surfaces and in sewers. The toolbox now includes mathematical formulations for accumulation of pollutants during dry weather period and their wash-off during rainfall events. The experimental data acquired in a previous research project carried out by the Environmental Engineering Research Centre (CIIA) at the Universidad de los Andes in Bogotá (Colombia) was used for the calibration of the models. Different numerical approaches were tested for their ability to calibrate to the sediment transport conditions. Initial results indicate, when there is more than one peak during the rainfall event duration, wash-off processes probably can be better represented using a model based on the flow instead of the rainfall intensity. Additionally, it was observed that using more detailed models (compared with an instantaneous approach) for representing pollutant accumulation do not necessarily lead to better results.


Science of The Total Environment | 2013

Monitoring and modelling to support wastewater system management in developing mega-cities.

Juan Pablo Rodríguez; Neil McIntyre; Mario Díaz-Granados; Juan Pablo Quijano; Cedo Maksimovic

Urban drainage system models can be useful to assess and manage system performance and to plan its development. However, due to data and computational costs, sophisticated, high-resolution contemporary models of the sewer system may not be applicable. This constraint is particularly marked in developing country mega-cities where catchments can be large, data tend to be scarce, and there are many unknowns, for example regarding sources, losses and wrong connections. This paper presents work undertaken over the last 7 years to develop a suitable monitoring and modelling framework to support operation and development of the wastewater system of Bogotá (Colombia). Components of the framework covered here are: (a) the flow and water quality database, (b) a wastewater pollution load generator, and (c) a semi-distributed sewer network model, which aims at a complexity that matches the information available from the previous two components. Results from a catchment within Bogotá, area 150 km(2) and with 2.5 million inhabitants, show that the model outputs capture the scale and dynamics of the observed concentrations and loads at various points on the sewer system. However uncertainty is high because much of variability of observed dry weather flow profiles is apparently random. Against this variability, the effects of in-sewer processes were not identifiable except where backwaters caused particularly high retention times. Hence the work has resulted in an operational model with a scientifically justified, yet useful, level of complexity for Bogotá. More generally, the work demonstrates the value of monitoring and modelling programmes, including having modellers actively involved in monitoring specification and operations; and the insights into suitable level of model complexity that may be gained by uncertainty and sensitivity analysis.

Collaboration


Dive into the Cedo Maksimovic's collaboration.

Top Co-Authors

Avatar

Nigel Graham

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christos Makropoulos

National Technical University of Athens

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lipen Wang

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Neil McIntyre

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge