Cédric Bény
University of Waterloo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cédric Bény.
Physical Review Letters | 2010
Cédric Bény; Ognyan Oreshkov
We derive necessary and sufficient conditions for the approximate correctability of a quantum code, generalizing the Knill-Laflamme conditions for exact error correction. Our measure of success of the recovery operation is the worst-case entanglement fidelity. We show that the optimal recovery fidelity can be predicted exactly from a dual optimization problem on the environment causing the noise. We use this result to obtain an estimate of the optimal recovery fidelity as well as a way of constructing a class of near-optimal recovery channels that work within twice the minimal error. In addition to standard subspace codes, our results hold for subsystem codes and hybrid quantum-classical codes.
Physical Review A | 2007
Cédric Bény; Achim Kempf; David W. Kribs
A formalism for quantum error correction based on operator algebras was introduced by us earlier [Phys. Rev. Lett. 98, 10052 (2007)] via consideration of the Heisenberg picture for quantum dynamics. The resulting theory allows for the correction of hybrid quantum-classical information and does not require an encoded state to be entirely in one of the corresponding subspaces or subsystems. Here, we provide detailed proofs for our earlier results, derive more results, and elucidate key points with expanded discussions. We also present several examples and indicate how the theory can be extended to operator spaces and general positive operator-valued measures.
Journal of Mathematical Physics | 2009
Cédric Bény; Achim Kempf; David W. Kribs
We present a generalization of quantum error correction to infinite-dimensional Hilbert spaces. We find that, under relatively mild conditions, much of the structure known from systems in finite-dimensional Hilbert spaces carries straightforwardly over to infinite dimensions. We also find that, at least in principle, there exist qualitatively new classes of quantum error correcting codes that have no finite-dimensional counterparts. We begin with a shift of focus from states to algebras of observables. Standard subspace codes and subsystem codes are seen as the special case of algebras of observables given by finite-dimensional von Neumann factors of type I. The new classes of codes that arise in infinite dimensions are shown to be characterized by von Neumann algebras of types II and III, for which we give in-principle physical examples.
New Journal of Physics | 2015
Cédric Bény; Tobias J. Osborne
In physics, one attempts to infer the rules governing a system given only the results of imperfect measurements. Hence, microscopic theories may be effectively indistinguishable experimentally. We develop an operationally motivated procedure to identify the corresponding equivalence classes of states, and argue that the renormalization group (RG) arises from the inherent ambiguities associated with the classes: one encounters flow parameters as, e.g., a regulator, a scale, or a measure of precision, which specify representatives in a given equivalence class. This provides a unifying framework and reveals the role played by information in renormalization. We validate this idea by showing that it justifies the use of low-momenta n-point functions as statistically relevant observables around a Gaussian hypothesis. These results enable the calculation of distinguishability in quantum field theory. Our methods also provide a way to extend renormalization techniques to effective models which are not based on the usual quantum-field formalism, and elucidates the relationships between various type of RG.
Physical Review A | 2015
Cédric Bény; Tobias J. Osborne
We propose a general formulation of the renormalisation group as a family of quantum channels which connect the microscopic physical world to the observable world at some scale. By endowing the set of quantum states with an operationally motivated information geometry, we induce the space of Hamiltonians with a corresponding metric geometry. The resulting structure allows one to quantify information loss along RG flows in terms of the distinguishability of thermal states. In particular, we introduce a family of functions, expressible in terms of two-point correlation functions, which are non increasing along the flow. Among those, we study the speed of the flow, and its generalization to infinite lattices.
Physical Review Letters | 2011
Cédric Bény
We derive simple necessary and sufficient conditions under which a quantum channel obtained from an arbitrary perturbation from the identity can be reversed on a given code to the lowest order in fidelity. We find the usual Knill-Laflamme conditions applied to a certain operator subspace which, for a generic perturbation, is generated by the Lindblad operators. For a weak interaction with an environment, the error space to be corrected is a subspace of that spanned by the interaction operators, selected by the environments initial state.
conference on theory of quantum computation communication and cryptography | 2009
Cédric Bény
We study the approximate correctability of general algebras of observables, which represent hybrid quantum-classical information. This includes approximate quantum error correcting codes and subsystems codes. We show that the main result of [1] yields a natural generalization of the Knill-Laflamme conditions in the form of a dimension independent estimate of the optimal reconstruction error for a given encoding, measured using the trace-norm distance to a noiseless channel.
International Journal of Quantum Information | 2008
Cédric Bény; David W. Kribs; Aron Pasieka
We give a brief introduction to the algebraic formulation of error correction in quantum computing called operator algebra quantum error correction (OAQEC). Then we extend one of the basic results for subsystem codes in operator quantum error correction (OQEC) to the OAQEC setting: Every hybrid classical-quantum code is shown to be unitarily recoverable in an appropriate sense. The algebraic approach of the proof yields a new, less technical proof for the OQEC case.
New Journal of Physics | 2017
Cédric Bény
A spin system on a lattice can usually be modeled at large scales by an effective quantum field theory. A key mathematical result relating the two descriptions is the quantum central limit theorem, which shows that certain spin observables satisfy an algebra of bosonic fields under certain conditions. Here, we show that these particular observables and conditions are the relevant ones for an observer with certain limited abilities to resolve spatial locations as well as spin values. This is shown by computing the asymptotic behaviour of a quantum Fisher information metric as function of the resolution parameters. The relevant observables characterise the state perturbations whose distinguishability does not decay too fast as a function of spatial or spin resolution.
Reviews in Mathematical Physics | 2011
Fumio Hiai; Milán Mosonyi; Dénes Petz; Cédric Bény