Cédric Boudot
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cédric Boudot.
American Journal of Pathology | 2009
Christian Baumgartner; Sabine Cerny-Reiterer; Karoline Sonneck; Matthias Mayerhofer; Karoline V. Gleixner; Richard Fritz; Marc Kerenyi; Cédric Boudot; Fabrice Gouilleux; Jan-Wilhelm Kornfeld; Christian Sillaber; Richard Moriggl; Peter Valent
Recent data suggest that the signal transducer and activator of transcription (STAT)5 contributes to differentiation and growth of mast cells. It has also been described that constitutively phosphorylated STAT5 (pSTAT5) plays a pro-oncogenic role in various myeloid neoplasms. We examined the expression of pSTAT5 in neoplastic mast cells in systemic mastocytosis and asked whether the disease-related oncoprotein KIT D816V is involved in STAT5 activation. As assessed by immunohistochemistry using the anti-pSTAT5 antibody AX1, neoplastic mast cells were found to display pSTAT5 in all SM patients examined (n = 40). Expression of pSTAT5 was also demonstrable in the KIT D816V-positive mast cell leukemia cell line HMC-1. Using various staining-protocols, pSTAT5 was found to be located in both the cytoplasmic and nuclear compartment of mast cells. To define the functional role of KIT D816V in STAT5-activation, Ba/F3 cells with doxycycline-inducible expression of KIT D816V were used. In these cells, induction of KIT D816V resulted in an increased expression of pSTAT5 without substantial increase in total STAT5. Moreover, the KIT D816V-targeting kinase-inhibitor PKC412 was found to counteract expression of pSTAT5 in HMC-1 cells as well as doxycycline-induced expression of pSTAT5 in Ba/F3 cells. Finally, a dominant negative STAT5-construct was found to inhibit growth of HMC-1 cells. Together, our data show that neoplastic mast cells express cytoplasmic and nuclear pSTAT5, that KIT D816V promotes STAT5-activation, and that STAT5-activation contributes to growth of neoplastic mast cells.
PLOS ONE | 2014
Isabelle Six; Hirokazu Okazaki; Priscilla Gross; Joanna Cagnard; Cédric Boudot; Julien Maizel; Tilman B. Drüeke; Ziad A. Massy
Chronic kidney disease (CKD) is regarded as a state of Klotho deficiency and FGF23 excess. In patients with CKD a strong association has been found between increased serum FGF23 and mortality risk, possibly via enhanced atherosclerosis, vascular stiffness, and vascular calcification. The aim of this study was to examine the hypothesis that soluble Klotho and FGF23 exert direct, rapid effects on the vessel wall. We used three in vitro models: mouse aorta rings, human umbilical vein endothelial cells, and human vascular smooth muscle cells (HVSMC). Increasing medium concentrations of soluble Klotho and FGF23 both stimulated aorta contractions and increased ROS production in HVSMC. Klotho partially reverted FGF23 induced vasoconstriction, induced relaxation on phosphate preconstricted aorta and enhanced endothelial NO production in HUVEC. Thus Klotho increased both ROS production in HVSMC and NO production in endothelium. FGF23 induced contraction in phosphate preconstricted vessels and increased ROS production. Phosphate, Klotho and FGF23 together induced no change in vascular tone despite increased ROS production. Moreover, the three compounds combined inhibited relaxation despite increased NO production, probably owing to the concomitant increase in ROS production. In conclusion, although phosphate, soluble Klotho and FGF23 separately stimulate aorta contraction, Klotho mitigates the effects of phosphate and FGF23 on contractility via increased NO production, thereby protecting the vessel to some extent against potentially noxious effects of high phosphate or FGF23 concentrations. This novel observation is in line with the theory that Klotho deficiency is deleterious whereas Klotho sufficiency is protective against the negative effects of phosphate and FGF23 which are additive.
Bone | 2010
Cédric Boudot; Zuzana Saidak; Abdel Krim Boulanouar; Laurent Petit; Fabrice Gouilleux; Ziad A. Massy; Michel Brazier; Romuald Mentaverri; Said Kamel
While the processes involved in the formation, maturation and apoptosis of osteoclasts have been investigated extensively in previous studies, little is known about the mechanisms responsible for the localization and homing of osteoclast precursor cells to the bone environment in order to initiate the bone remodeling process. Recent studies have suggested that the extracellular Ca(2+) (Ca(2+)(o)) concentration gradient present near the bone environment may be one of the participating factors, producing a chemoattractant effect on osteoclast precursors. Using the murine osteoclast precursor cells of the monocyte-macrophage lineage, the RAW 264.7 cell line, we have shown that Ca(2+)(o) increases the migration of these cells in a directional manner. The participation of the calcium sensing receptor (CaR) in this effect was tested by knocking down its expression through RNA interference, which resulted in an abolition of the migratory response. By the use of specific pathway inhibitors and western blot analysis, the phosphoinositide 3-kinase (PI3K)/Akt and phospholipase Cbeta pathways were shown to be implicated in the migratory effect. The implication of the Akt pathway in the Ca(2+)(o)-induced chemoattraction of RAW 264.7 cells was also confirmed by transducing the cells with the fusion protein TAT-dominant negative-Akt, which decreased the migratory effect. In contrast, the MAPK pathways (ERK1/2, p38 and JNK) were not involved in the production of the migratory effect. We conclude that through the activation of the CaR and subsequent signaling via the PI3K/Akt pathway, Ca(2+)(o) produces a chemoattractant effect on the osteoclast precursor RAW 264.7 cells. These results suggest that the Ca(2+)(o) gradient present near the bone may be one of the initiating factors for the homing of osteoclast precursors to bone, thus possibly playing a role in the initiation of bone remodeling.
Journal of Tissue Engineering and Regenerative Medicine | 2017
Richard Gouron; Laurent Petit; Cédric Boudot; Isabelle Six; Michel Brazier; Said Kamel; Romuald Mentaverri
In 2000, Masquelet reported a long bone reconstruction technique using an induced membrane formed around a polymethylmethacrylate (PMMA) spacer placed in the defect with appropriate stabilization followed by secondary bone graft after PMMA removal. This reconstruction procedure allows rapid and safe bone reformation for septic, traumatic, neoplastic or congenital bone defects. A rat model of the Masquelet technique was developed to further characterize the biological activities of this induced membrane. Our model allows healing of a critical‐sized femoral defect (8 mm) by means of this procedure over a period of 18 weeks. Comparison of induced membranes obtained 3, 4, 5 and 6 weeks after PMMA insertion indicated that this tissue changes over time. Several mineralization spots and bone cells were observed in contact with the PMMA, when assessed by Alizarin Red, Von Kossa, Alkaline phosphatase and Tartrate‐resistant acid phosphatase staining of the membranes. CTR (calcitonin receptor)‐ and RANK (Receptor Activator of Nuclear factor Kappa B)‐ positive mononuclear cells were detected in the induced membrane, confirming the presence of osteoclasts in this tissue. These cells were observed in a thin, highly cellular layer in the induced membrane in contact with the PMMA. Together, these findings suggest that the membrane is able to promote osteointegration of autologous corticocancellous bone grafts during the Masquelet technique by creating local conditions that may be favourable to graft bone remodelling and osteointegration. Copyright
Journal of Cellular Physiology | 2015
Priscilla Gross; Ziad A. Massy; Lucie Hénaut; Cédric Boudot; Joanna Cagnard; Cécilia March; Said Kamel; Tilman B. Drüeke; Isabelle Six
Chronic kidney disease (CKD) is characterized by vascular remodeling and the retention of uremic toxins, several of which are independently associated with the high cardiovascular mortality rate in CKD patients. Whether the association between these uremic toxins and cardiovascular mortality is due to induction of vascular dysfunction and resulting vascular remodeling remains to be determined. This study evaluates the effects of para‐cresyl sulfate (PCS), a newly identified uremic toxin, on vascular function and remodeling. PCS acutely induced oxidative stress in both endothelial and vascular smooth muscle cells, with a maximal effect at 0.15 mM, corresponding to the mean “uremic” concentration found in dialysis patients. PCS significantly increased within 30 min phenylephrine‐induced contraction of mouse thoracic aorta, through direct activation of rho‐kinase, independently of oxidative stress induction, as demonstrated by the capacity of rho‐kinase inhibitor Y‐27632 to abolish this effect. After exposure of the aorta to PCS for 48 h, we observed inward eutrophic remodeling, a hallmark of uremic vasculopathy characterized by a reduction of the area of both lumen and media, with unchanged media/lumen ratio. In conclusion, elevated PCS concentrations such as those observed in CKD patients, by promoting both vascular dysfunction and vascular remodeling, may contribute to the development of hypertension and to cardiovascular mortality in CKD. J. Cell. Physiol. 230: 2927–2935, 2015.
Endocrinology | 2015
Aurélien Mary; Lucie Hénaut; Cédric Boudot; Isabelle Six; Michel Brazier; Ziad A. Massy; Tilman B. Drüeke; Said Kamel; Romuald Mentaverri
Vascular calcification (VC) is a degenerative disease that contributes to cardiovascular morbidity and mortality. A negative relationship has been demonstrated between VC and calcium sensing receptor (CaSR) expression in the vasculature. Of interest, vitamin D response elements, which allow responsiveness to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], are present in the promoters of the CaSR gene. We hypothesized that 1,25(OH)2D3, by modulating CaSR expression in vascular smooth muscle cells (VSMCs), might protect against VC. Human VSMCs were exposed to increasing concentrations of 1,25(OH)2D3 (0.01-10 nmol/L) in noncalcifying (1.8 mmol/L) or procalcifying Ca(2+)0 condition (5.0 mmol/L). Using quantitative RT-PCR and Western blotting we observed a significant increase in both CaSR mRNA and protein levels after exposure to 1.0 nmol/L 1,25(OH)2D3. This effect was associated with a maximal increase in CaSR expression at the cell surface after 48 hours of 1,25(OH)2D3 treatment, as assessed by flow cytometry. Down-regulation of the vitamin D receptor by small interfering RNA abolished these effects. In the procalcifying condition, 1.0 nmol/L 1,25(OH)2D3 blocked the Ca(2+)0-induced decrease in total and surface CaSR expression and protected against mineralization. Down-regulation of CaSR expression by CaSR small interfering RNA abolished this protective effect. 1,25(OH)2D3 concentrations of 0.5 and 5.0 nmol/L were also effective, but other (0.01, 0.1, and 10 nmol/L) concentrations did not modify CaSR expression and human VSMC mineralization. In conclusion, these findings suggest that nanomolar concentrations of 1,25(OH)2D3 induce a CaSR-dependent protection against VC. Both lower and higher concentrations are either ineffective or may even promote VC. Whether this also holds true in the clinical setting requires further study.
Therapeutic Apheresis and Dialysis | 2011
Anaïs Mozar; Loïc Louvet; Patrice Morlière; Corinne Godin; Cédric Boudot; Said Kamel; Tilman B. Drüeke; Ziad A. Massy
Uremic syndrome is attributed to the progressive retention of a large number of compounds, such as indoxyl sulfate, which under physiological conditions are excreted by the kidneys. Previous in vitro studies have demonstrated that uremic indoxyl sulfate concentrations induce a weak increase in the proliferation of both rat and human vascular aortic smooth muscle cells (hVASMC) after short term exposition to the toxin (i.e. 24 h). In the present study, we evaluated indoxyl sulfate effects on the proliferation of hVASMC at three different concentrations after long‐term exposure (seven days). In contrast to previously published studies, we observed a dose‐dependent and significant inhibitory effect of this toxin on hVASMC proliferation. We also demonstrated that indoxyl sulfate inhibits epidermal growth factor‐induced hVASMC proliferation after long‐term exposure. Indoxyl sulfate effects were associated with a dose‐dependent induction of intracellular reactive oxygen species and up‐regulation of p21 and p27 protein expression. Chronic exposure to indoxyl sulfate produces a significant inhibitory effect on hVASMC proliferation. The relevance of these findings must be evaluated by further studies, particularly in an in vivo setting.
Arthritis Research & Therapy | 2014
Julien Paccou; Cédric Boudot; Cédric Renard; Sophie Liabeuf; Said Kamel; Patrice Fardellone; Ziad A. Massy; Michel Brazier; Romuald Mentaverri
IntroductionHuman circulating monocytes express the calcium-sensing receptor (CaSR) and are involved in atherosclerosis. This study investigated the potential association between vascular calcification in rheumatoid arthritis (RA) and CaSR expression in circulating monocytes.MethodsIn this cross-sectional study, 50 RA patients were compared to 25 control subjects matched for age and gender. Isolation of peripheral blood mononuclear cells and flow cytometry analysis were performed to study the surface and total CaSR expression in circulating monocytes. Coronary artery calcium (CAC) and abdominal aortic calcification (AAC) scores were evaluated by computed tomography and an association between these scores and the surface and/or total CaSR expression in circulating monocytes in RA patients was investigated.ResultsThe two groups were similar in terms of age (RA: 60.9 ± 8.3 years, versus controls: 59.6 ± 5.3 years) and gender (RA: 74.0% females versus 72.0% females). We did not find a higher prevalence and greater burden of CAC or AAC in RA patients versus age- and gender-matched controls. When compared with control subjects, RA patients did not exhibit greater total CaSR (101.6% ± 28.8 vs. 99.9% ± 22.0) or surface CaSR (104.6% ± 20.4 vs. 99.9% ± 13.7) expression, but total CaSR expression in circulating monocytes was significantly higher in RA patients with severe CAC (Agatston score ≥200, n = 11) than in patients with mild-to-moderate CAC (1 to 199, n = 21) (P = 0.01).ConclusionsThis study demonstrates for the first time that total CaSR expression in human circulating monocytes is increased in RA patients with severe coronary artery calcification.
Oncotarget | 2017
Cédric Boudot; Lucie Hénaut; Ursula Thiem; Sandra Geraci; Mariangela Galante; Paulo Saldanha; Zuzana Saidak; Isabelle Six; Philippe Clézardin; Said Kamel; Romuald Mentaverri
Introduction and Aims Osteolytic bone metastases are observed in advanced cases of breast cancer. In vitro data suggest that the activity of the calcium-sensing receptor (CaSR) expressed by metastatic cells could potentiate their osteolytic potential. This study aimed to demonstrate in vivo the involvement of the CaSR in breast cancer cells osteolytic potential and to identify potential targets linked to CaSR activity. Methods and Results MDA-MB-231 stably transfected with plasmids containing either a full-length wild-type CaSR (CaSR-WT), or a functionally inactive dominant negative mutant (CaSR-DN) or an empty vector (EV) were intratibially injected into Balb/c-Nude mice. X-ray analysis performed 19 days after injection showed a dramatic increase of osteolytic lesions in mice injected with CaSR-WT-transfected cells as compared to mice injected with EV- or CaSR-DN-transfected cells. This was associated with decreased BV/TV ratio and increased tumor burden. Epiregulin, an EGF-like ligand, was identified by a DNA microarray as a possible candidate involved in CaSR-mediated osteolysis. Indeed, in vitro, CaSR overexpression increased both epiregulin expression and secretion as compared to EV- or CaSR-DN-transfected cells. Increased epiregulin expression was also detected in osteolytic bone lesions from mice injected with CaSR-WT-transfected MDA-MB-231. In vitro, exposure of osteoblastic cells (HOB and SaOS2) to exogenous epiregulin significantly decreased OPG mRNA expression. Exposure of osteoblastic cells to conditioned media prepared from CaSR-WT-transfected cells also decreased OPG expression. This effect was partially blocked after addition of an anti-epiregulin antibody. Conclusions Overexpression of a functional CaSR in metastatic breast cancer cells dramatically amplifies their osteolytic potential through epiregulin-mediated OPG downregulation.INTRODUCTION AND AIMS Osteolytic bone metastases are observed in advanced cases of breast cancer. In vitro data suggest that the activity of the calcium-sensing receptor (CaSR) expressed by metastatic cells could potentiate their osteolytic potential. This study aimed to demonstrate in vivo the involvement of the CaSR in breast cancer cells osteolytic potential and to identify potential targets linked to CaSR activity. METHODS AND RESULTS MDA-MB-231 stably transfected with plasmids containing either a full-length wild-type CaSR (CaSR-WT), or a functionally inactive dominant negative mutant (CaSR-DN) or an empty vector (EV) were intratibially injected into Balb/c-Nude mice. X-ray analysis performed 19 days after injection showed a dramatic increase of osteolytic lesions in mice injected with CaSR-WT-transfected cells as compared to mice injected with EV- or CaSR-DN-transfected cells. This was associated with decreased BV/TV ratio and increased tumor burden. Epiregulin, an EGF-like ligand, was identified by a DNA microarray as a possible candidate involved in CaSR-mediated osteolysis. Indeed, in vitro, CaSR overexpression increased both epiregulin expression and secretion as compared to EV- or CaSR-DN-transfected cells. Increased epiregulin expression was also detected in osteolytic bone lesions from mice injected with CaSR-WT-transfected MDA-MB-231. In vitro, exposure of osteoblastic cells (HOB and SaOS2) to exogenous epiregulin significantly decreased OPG mRNA expression. Exposure of osteoblastic cells to conditioned media prepared from CaSR-WT-transfected cells also decreased OPG expression. This effect was partially blocked after addition of an anti-epiregulin antibody. CONCLUSIONS Overexpression of a functional CaSR in metastatic breast cancer cells dramatically amplifies their osteolytic potential through epiregulin-mediated OPG downregulation.
Nephrology Dialysis Transplantation | 2015
Tanja Celic; Valérie Metzinger-Le Meuth; Isabelle Six; Eléonore M'Baya-Moutoula; Cédric Boudot; Tilman B. Drüeke; Ziad A. Massy; Laurent Metzinger