Cédric Brandam
University of Toulouse
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cédric Brandam.
European Food Research and Technology | 2013
Joyce Kheir; Dominique Salameh; Pierre Strehaiano; Cédric Brandam; Roger Lteif
Volatile phenols are aromatic compounds and one of the key molecules responsible for olfactory defects in wine. The yeast genus Brettanomyces is the only major microorganism that has the ability to covert hydroxycinnamic acids into important levels of these compounds, especially 4-ethylphenol and 4-ethylguaiacol, in red wine. When 4-ethylphenols reach concentrations greater than the sensory threshold, all wine’s organoleptic characteristics might be influenced or damaged. The aim of this literature review is to provide a better understanding of the physicochemical, biochemical, and metabolic factors that are related to the levels of p-coumaric acid and volatile phenols in wine. Then, this work summarizes the different methods used for controlling the presence of Brettanomyces in wine and the production of ethylphenols.
Bioscience, Biotechnology, and Biochemistry | 2013
Cédric Brandam; Quoc Phong Lai; Anne Julien-Ortiz; Patricia Taillandier
Torulaspora delbrueckii metabolism was assessed in a synthetic culture medium similar to grape must under various conditions: no aeration and three different oxygen feeds, in order to determine the effect of oxygen on metabolism. Carbon and nitrogen mass balances were calculated to quantify metabolic fluxes. The effect of oxygen was to decrease the flux of carbon going into the fermentation pathway in favor of growth. In the absence of aeration, higher amounts of glycerol were produced, probably to maintain the redox balance. The oxygen requirement of this strain was high, since even for the highest air supply oxygen became limiting after 24 h. Nevertheless, this strain developed well in the absence of oxygen and consumed 220 g/L of sugars (glucose/fructose) in 166 h at 20 °C, giving a good ethanol yield (0.50 g/g).
Journal of Applied Microbiology | 2015
Patricia Taillandier; Claire Joannis-Cassan; Jean-Baptiste Jentzer; Sandrine Gautier; Nathalie Sieczkowski; Daniel Granès; Cédric Brandam
To investigate the action mechanisms of a specific fungal origin chitosan preparation on Brettanomyces bruxellensis.
Waste Management | 2016
Olivia Maamari; Lara Mouaffak; Ramza Kamel; Cédric Brandam; Roger Lteif; Dominique Salameh
Many studies show that the treatment of Infectious Health Care Waste (IHCW) in steam sterilization devices at usual operating standards does not allow for proper treatment of Infectious Health Care Waste (IHCW). Including a grinding component before sterilization allows better waste sterilization, but any hard metal object in the waste can damage the shredder. The first objective of the study is to verify that efficient IHCW treatment can occur at standard operating parameters defined by the contact time-temperature couple in steam treatment systems without a pre-mixing/fragmenting or pre-shredding step. The second objective is to establish scientifically whether the standard operation conditions for a steam treatment system including a step of pre-mixing/fragmenting were sufficient to destroy the bacterial spores in IHCW known to be the most difficult to treat. Results show that for efficient sterilization of dialysis cartridges in a pilot 60L steam treatment system, the process would require more than 20 min at 144°C without a pre-mixing/fragmenting step. In a 720L steam treatment system including pre-mixing/fragmenting paddles, only 10 min at 144°C are required to sterilize IHCW proved to be sterilization challenges such as dialysis cartridges and diapers in normal conditions of rolling.
Journal of Biotechnology | 2015
Jihane Rahbani Mounsef; Dominique Salameh; Nicolas Louka; Cédric Brandam; Roger Lteif
The aeration is a key factor for Bacillus thuringiensis growth, sporulation and δ-endotoxins production. The objective of our work was to study the effect of aeration on the fermentation kinetics of Bacillus thuringiensis kurstaki (Btk), cultivated in a cereal milling byproduct (CMB) mono-component medium, in order to improve the δ-endotoxins productivity. Aeration conditions were systematically characterized by the volumetric mass transfer coefficient KLa. In the 6% CMB culture medium, different values of the maximal specific oxygen uptake rate were obtained at different values of KLa. For KLa of 7.2 h(-1), the growth was inhibited and the sporulation was defective. There was a linear increase of the average specific growth rate and faster sporulation and liberation of spores and δ-endotoxins crystals when KLa was increased between 13.3 h(-1) and 65.5 h(-1). Similar kinetic was observed in cultures performed at KLa equal to 65.5 h(-1) and 106.2 h(-1). The highest toxins productivity of 96.1 mg L(-1) (h)-1 was obtained in the 9% CMB culture medium for KLa of 102 h(-1). It was possible to track the evolution of the bacterial cells between vegetative growth, sporulation and liberation of mature spores by following the variation of the CO2 percent in the effluent gas.
Journal of Bioscience and Bioengineering | 2008
Caroline Strub; Cédric Brandam; Xuân-Mi Meyer; Ahmed Lebrihi
Development of bacterial resistance to antibiotics has lead to investigations of rare bacteria, which produce new bioactive molecules. Saccharothrix algriensis has been isolated from the desert Maghreb. It produces dithiolopyrrolones, some of which were newly identified. In order to optimize and control production of dithiolopyrrolones, investigation regarding microorganism metabolism was required. Growth on semisynthetic medium containing 2 g x l(-1) of yeast extract was complicated because it was performed on several substrates. Moreover, because development of this bacterium on minimum medium was difficult, its composition was optimized by screening of different compounds led by yeast extract. Uracil added to the minimum medium allowed a maximum biomass production of 1.35 g x l(-1) compared to 0.32 g x l(-1) without uracil. Moreover, nonpolar amino acids and trace metal elements stimulated Saccharothrix algeriensis growth.
European Food Research and Technology | 2018
Paul Brou; Patricia Taillandier; Sandra Beaufort; Cédric Brandam
The role of the initial concentration of anaerobic growth factors (AGF) on interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae was investigated in strict anaerobiosis. Experiments were performed in a synthetic grape must medium in a membrane bioreactor, a special tool designed for studying direct and indirect interactions between microorganisms. In pure culture fermentations, increased AGF concentration had no impact on S. cerevisiae behaviour, whereas it induced an extension of T. delbrueckii latency. Surprisingly, T. delbrueckii used only 75 to 80% of the consumed sugar to produce biomass, glycerol and ethanol. Physical separation influenced the population dynamics of co-fermentations. S.cerevisiae dominated the co-cultures having a single dose of AGF as its presence indirectly induced a decrease in numbers of living T. delbrueckii cells and physical contact with T. delbrueckii stimulated S.cerevisiae growth. Increasing the AGF initial concentration completely upset this domination: S. cerevisiae growth was not stimulated and T. delbrueckii living cells did not decrease. Yeasts incorporate exogenous AGFs, which probably impact their response to competing yeasts. The increase in AGF might have induced changes in the lipid composition of the T. delbrueckii membrane, which would hinder its interaction with S. cerevisiae antimicrobial peptides. The initial concentration of anaerobic growth factors influenced co-culture fermentation population dynamics tremendously, thus highlighting a new way to monitor population evolution and eventually wine organoleptic properties.
European Food Research and Technology | 2017
Hélène Daniels-Treffandier; Christine Campbell; Joyce Kheir; Dominique Salameh; Roger Lteif; Cédric Brandam; Patricia Taillandier
Brettanomyces/Dekkera bruxellensis is a cause of major concern for the winemaking industry worldwide. If a slight presence of this spoilage yeast in red wine adds a Brett character, a strong contamination has irreversible and detrimental effects on the organoleptic qualities due to the production of volatile phenols such as 4-ethylphenol. Time is a key factor in the treatment of B. bruxellensis contaminations. Nowadays, the diagnostic and quantification resources available are time consuming and too expensive, making them either inadequate or inaccessible to most of the winemakers. This study was focused on a new, easy to use, inexpensive method that could allow winemakers to directly detect B. bruxellensis contamination in red wine at an early stage, hence, reducing wine spoilage. In this work, the ability of Pseudomonas putida 4-ethylphenol methylene hydroxylase was tested in order to catabolize the 4-ethylphenol and to elaborate an enzymatic assay with the purpose of detecting early contaminations by B. bruxellensis in red wine. We have developed a colorimetric enzymatic assay, based on the redox state of the 4-ethylphenol methylene hydroxylase co-factor, cytochrome C, that can detect and quantify low concentrations of 4-ethylphenol. The range of concentrations detected is well below the level detectable by the human nose. Combined to an enrichment step, this method allows the detection of B. bruxellensis at an initial concentration of less than 10 cells per ml.
Computer-aided chemical engineering | 2009
Huberson Akin; Cédric Brandam; Xuân-Mi Meyer; Pierre Strehaiano
Abstract This work deals with the use of a mathematical model to investigate the influence of the nitrogenous source on the pH during alcoholic fermentation in winemaking. The application of the model to fermentation medium whose nitrogen source was made up only of ammoniac confirms the assumption that the assimilation of one mole of ammonia releases one mole of proton in the medium. The use of the model made it possible to invalidate two assumptions concerning the impact of the assimilation of the amino acids on the pH. The most probable assumption is that the assimilation of the molecules of amino acids charged positively led to the emission of protons in the extra cellular medium. The model including this assumption was also used successfully to predict pH in the case of a fermentation realised with natural grape must.
World Journal of Microbiology & Biotechnology | 2014
Patricia Taillandier; Quoc Phong Lai; Anne Julien-Ortiz; Cédric Brandam