Cedric K. W. Tan
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cedric K. W. Tan.
Nature | 2014
Pau Carazo; Cedric K. W. Tan; Felicity Allen; Stuart Wigby; Tommaso Pizzari
To resolve the mechanisms that switch competition to cooperation is key to understanding biological organization. This is particularly relevant for intrasexual competition, which often leads to males harming females. Recent theory proposes that kin selection may modulate female harm by relaxing competition among male relatives. Here we experimentally manipulate the relatedness of groups of male Drosophila melanogaster competing over females to demonstrate that, as expected, within-group relatedness inhibits male competition and female harm. Females exposed to groups of three brothers unrelated to the female had higher lifetime reproductive success and slower reproductive ageing compared to females exposed to groups of three males unrelated to each other. Triplets of brothers also fought less with each other, courted females less intensively and lived longer than triplets of unrelated males. However, associations among brothers may be vulnerable to invasion by minorities of unrelated males: when two brothers were matched with an unrelated male, the unrelated male sired on average twice as many offspring as either brother. These results demonstrate that relatedness can profoundly affect fitness through its modulation of intrasexual competition, as flies plastically adjust sexual behaviour in a manner consistent with kin-selection theory.
Proceedings of the Royal Society of London B: Biological Sciences | 2013
Cedric K. W. Tan; Hanne Løvlie; Elisabeth Greenway; Stephen F. Goodwin; Tommaso Pizzari; Stuart Wigby
Studies of mating preferences have largely neglected the potential effects of individuals encountering their previous mates (‘directly sexually familiar’), or new mates that share similarities to previous mates, e.g. from the same family and/or environment (‘phenotypically sexually familiar’). Here, we show that male and female Drosophila melanogaster respond to the direct and phenotypic sexual familiarity of potential mates in fundamentally different ways. We exposed a single focal male or female to two potential partners. In the first experiment, one potential partner was novel (not previously encountered) and one was directly familiar (their previous mate); in the second experiment, one potential partner was novel (unrelated, and from a different environment from the previous mate) and one was phenotypically familiar (from the same family and rearing environment as the previous mate). We found that males preferentially courted novel females over directly or phenotypically familiar females. By contrast, females displayed a weak preference for directly and phenotypically familiar males over novel males. Sex-specific responses to the familiarity of potential mates were significantly weaker or absent in Orco1 mutants, which lack a co-receptor essential for olfaction, indicating a role for olfactory cues in mate choice over novelty. Collectively, our results show that direct and phenotypic sexual familiarity is detected through olfactory cues and play an important role in sex-specific sexual behaviour.
Evolution | 2013
Cedric K. W. Tan; Tommaso Pizzari; Stuart Wigby
In principle, parental relatedness, parental age, and the age of parental gametes can all influence offspring fitness through inbreeding depression and the parental effects of organismal and postmeiotic gametic senescence. However, little is known about the extent to which these factors interact and contribute to fitness variation. Here, we show that, in Drosophila melanogaster, offspring viability is strongly affected by a three‐way interaction between parental relatedness, parental age, and gametic age at successive developmental stages. Overall egg‐to‐adult viability was lowest for offspring produced with old gametes of related, young parents. This overall effect was largely determined at the pupa–adult stage, although three‐way interactions between parental relatedness, parental age and gametic age also explained variation in egg hatchability and larva‐pupa survival. Controlling for the influence of parental and gametic age, we show that inbreeding depression is negligible for egg hatchability but significant at the larva–pupa and pupa–adult stages. At the pupa–adult stage, where offspring could be sexed, parental relatedness, parental age, and gametic age interacted differently in male and female offspring, with daughters suffering higher inbreeding depression than sons. Collectively, our results demonstrate that the architecture of offspring fitness is strongly influenced by a complex interaction between parental effects, inbreeding depression and offspring sex.
PLOS ONE | 2016
Daniel Gomes da Rocha; Rahel Sollmann; Emiliano Esterci Ramalho; Renata Ilha; Cedric K. W. Tan
Ocelots (Leopardus pardalis) are presumed to be the most abundant of the wild cats throughout their distribution range and to play an important role in the dynamics of sympatric small-felid populations. However, ocelot ecological information is limited, particularly for the Amazon. We conducted three camera-trap surveys during three consecutive dry seasons to estimate ocelot density in Amanã Reserve, Central Amazonia, Brazil. We implemented a spatial capture-recapture (SCR) model that shared detection parameters among surveys. A total effort of 7020 camera-trap days resulted in 93 independent ocelot records. The estimate of ocelot density in Amanã Reserve (24.84 ± SE 6.27 ocelots per 100 km2) was lower than at other sites in the Amazon and also lower than that expected from a correlation of density with latitude and rainfall. We also discuss the importance of using common parameters for survey scenarios with low recapture rates. This is the first density estimate for ocelots in the Brazilian Amazon, which is an important stronghold for the species.
Evolution | 2017
Cedric K. W. Tan; Philippa Doyle; Emma Bagshaw; David S. Richardson; Stuart Wigby; Tommaso Pizzari
In structured populations, competition for reproductive opportunities should be relaxed among related males. The few tests of this prediction often neglect the fact that sexual selection acts through multiple mechanisms, both before and after mating. We performed experiments to study the role of within‐group male relatedness across pre‐ and postcopulatory mechanisms of sexual selection in social groups of red junglefowl, Gallus gallus, in which two related males and one unrelated male competed over females unrelated to all the males. We confirm theoretical expectations that, after controlling for male social status, competition over mating was reduced among related males. However, this effect was contrasted by other sexual selection mechanisms. First, females biased male mating in favor of the unrelated male, and might also favor his inseminations after mating. Second, males invested more—rather than fewer—sperm in postcopulatory competition with relatives. A number of factors may contribute to explain this counterintuitive pattern of sperm allocation, including trade‐offs between male investment in pre‐ versus postcopulatory competition, differences in the relative relatedness of pre‐ versus postcopulatory competitors, and female bias in sperm utilization in response to male relatedness. Collectively, these results reveal that within‐group male relatedness may have contrasting effects in different mechanisms of sexual selection.
Proceedings of the Royal Society B: Biological Sciences | 2018
Patrik G. Flammer; Simon Dellicour; Stephen G. Preston; Dirk Rieger; Sylvia Warren; Cedric K. W. Tan; Rebecca L. Nicholson; Renáta Přichystalová; Niels Bleicher; Joachim Wahl; Nuno Rodrigues Faria; Oliver G. Pybus; Mark Pollard; Adrian L. Smith
Throughout history, humans have been afflicted by parasitic worms, and eggs are readily detected in archaeological deposits. This study integrated parasitological and ancient DNA methods with a large sample set dating between Neolithic and Early Modern periods to explore the utility of molecular archaeoparasitology as a new approach to study the past. Molecular analyses provided unequivocal species-level parasite identification and revealed location-specific epidemiological signatures. Faecal–oral transmitted nematodes (Ascaris lumbricoides and Trichuris trichiura) were ubiquitous across time and space. By contrast, high numbers of food-associated cestodes (Diphyllobothrium latum and Taenia saginata) were restricted to medieval Lübeck. The presence of these cestodes and changes in their prevalence at approximately 1300 CE indicate substantial alterations in diet or parasite availability. Trichuris trichiura ITS-1 sequences grouped into two clades; one ubiquitous and one restricted to medieval Lübeck and Bristol. The high sequence diversity of T.t.ITS-1 detected in Lübeck is consistent with its importance as a Hanseatic trading centre. Collectively, these results introduce molecular archaeoparasitology as an artefact-independent source of historical evidence.
PeerJ | 2018
Cedric K. W. Tan; Jiin Woei Lee; Adeline Hii; Yen Yi Loo; Ahimsa Campos-Arceiz; David W. Macdonald
Games are an increasingly popular approach for conservation teaching. However, we know little about the effectiveness of the games on students’ experiences and knowledge acquisition. Many current games are supplemental games (SG) that have no meaningful interaction with the subject matter. We adapted the experiential gaming (EG) model where students were immersed in goal-orientated tasks found in real-life situations, and they tackled questions to complete actions for their main task. Classroom-based games were created for eight different conservation topics for an annual Wildlife Conservation Course and an annual Diploma in International Wildlife Conservation Practice. Data were collected over two cycles, a total sample size of 55 multinational students. We used a combination of repeated-measures design and counterbalanced measures design; each student was subjected at least twice to each of the EG and didactic instruction (DI) treatments, and at least once to the SG approach. We compared students’ perception, learning and behavioural responses to the treatments, including measures of student personality types and learning styles as explanatory variables. Findings revealed multiple benefits of the classroom EG compared to the DI approach, such as increased attention retention, increased engagement and added intrinsic motivation. The improved level of intrinsic motivation was mainly facilitated by increased social bonding between participants. Further, we show that this EG approach appeals to a wide range of learning styles and personalities. The performance of SG was generally intermediate between that of EG and DI. We propose EG as a beneficial complement to traditional classroom teaching and current gamified classes for conservation education.
Ecology and Evolution | 2018
Ugyen Penjor; David W. Macdonald; Sonam Wangchuk; Tandin Tandin; Cedric K. W. Tan
Abstract The survival of large carnivores is increasingly precarious due to extensive human development that causes the habitat loss and fragmentation. Habitat selection is influenced by anthropogenic as well as environmental factors, and understanding these relationships is important for conservation management. We assessed the environmental and anthropogenic variables that influence site use of clouded leopard Neofelis nebulosa in Bhutan, estimated their population density, and used the results to predict the species’ site use across Bhutan. We used a large camera‐trap dataset from the national tiger survey to estimate for clouded leopards, for the first time in Bhutan, (1) population density using spatially explicit capture–recapture models and (2) site‐use probability using occupancy models accounting for spatial autocorrelation. Population density was estimated at D^Bayesian=0.40 (0.10 SD) and D^maximum−likelihood=0.30 (0.12 SE) per 100 km2. Clouded leopard site use was positively associated with forest cover and distance to river while negatively associated with elevation. Mean site‐use probability (from the Bayesian spatial model) was ψ^spatial=0.448 (0.076 SD). When spatial autocorrelation was ignored, the probability of site use was overestimated, ψ^nonspatial=0.826 (0.066 SD). Predictive mapping allowed us to identify important conservation areas and priority habitats to sustain the future of these elusive, ambassador felids and associated guilds. Multiple sites in the south, many of them outside of protected areas, were identified as habitats suitable for this species, adding evidence to conservation planning for clouded leopards in continental South Asia.
Animal Behaviour | 2012
Cedric K. W. Tan; Hanne Løvlie; Tommaso Pizzari; Stuart Wigby
Biological Conservation | 2017
Cedric K. W. Tan; Daniel Gomes da Rocha; Gopalasamy Reuben Clements; Esteban Brenes-Mora; Laurie Hedges; Kae Kawanishi; Shariff Wan Mohamad; D. Mark Rayan; Gilmoore Bolongon; Jonathan Moore; Jamie Wadey; Ahimsa Campos-Arceiz; David W. Macdonald