Cedric Laize
University of Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cedric Laize.
Science of The Total Environment | 2016
Pamela S. Naden; John Murphy; Gareth H. Old; Jonathan Newman; Peter Scarlett; M. Harman; Chas P. Duerdoth; Adrianna Hawczak; James L. Pretty; Amanda Arnold; Cedric Laize; D.D. Hornby; A.L. Collins; D.A. Sear; J.I. Jones
Excessive sediment pressure on aquatic habitats is of global concern. A unique dataset, comprising instantaneous measurements of deposited fine sediment in 230 agricultural streams across England and Wales, was analysed in relation to 20 potential explanatory catchment and channel variables. The most effective explanatory variable for the amount of deposited sediment was found to be stream power, calculated for bankfull flow and used to index the capacity of the stream to transport sediment. Both stream power and velocity category were highly significant (p ≪ 0.001), explaining some 57% variation in total fine sediment mass. Modelled sediment pressure, predominantly from agriculture, was marginally significant (p<0.05) and explained a further 1% variation. The relationship was slightly stronger for erosional zones, providing 62% explanation overall. In the case of the deposited surface drape, stream power was again found to be the most effective explanatory variable (p<0.001) but velocity category, baseflow index and modelled sediment pressure were all significant (p<0.01); each provided an additional 2% explanation to an overall 50%. It is suggested that, in general, the study sites were transport-limited and the majority of stream beds were saturated by fine sediment. For sites below saturation, the upper envelope of measured fine sediment mass increased with modelled sediment pressure. The practical implications of these findings are that (i) targets for fine sediment loads need to take into account the ability of streams to transport/retain fine sediment, and (ii) where agricultural mitigation measures are implemented to reduce delivery of sediment, river management to mobilise/remove fines may also be needed in order to effect an improvement in ecological status in cases where streams are already saturated with fines and unlikely to self-cleanse.
Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2014
Julian R. Thompson; Cedric Laize; A.J. Green; Mike Acreman; Daniel G. Kingston
Abstract A MIKE SHE model of the Mekong, calibrated and validated for 12 gauging stations, is used to simulate climate change scenarios associated with a 2°C increase in global mean temperature projected by seven general circulation models (GCMs). Impacts of each scenario on the river ecosystem and, hence, uncertainty associated with different GCMs are assessed through an environmental flow method based on the range of variability approach. Ecologically relevant hydrological indicators are evaluated for the baseline and each scenario. Baseline-to-scenario change is assessed against thresholds that define likely risk of ecological impact. They are aggregated into single scores for high and low flows. The results demonstrate considerable inter-GCM differences in risk of change. Uncertainty is larger for low flows, with some GCMs projecting high and medium risk at the majority of locations, and others suggesting widespread no or low risk. Inter-GCM differences occur along the main Mekong, as well as within major tributaries. Editor Z.W. Kundzewicz Citation Thompson, J.R., Laizé, C.L.R., Green, A.J., Acreman, M.C., and Kingston, D.G., 2014. Climate change uncertainty in environmental flows for the Mekong River. Hydrological Sciences Journal, 59 (3–4), 935–954.
Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2014
Thomas P. Worrall; Michael J. Dunbar; Chris A. Extence; Cedric Laize; Wendy A. Monk; Paul J. Wood
Abstract The importance of flow regime variability for maintaining ecological functioning and integrity of river ecosystems has been firmly established in both natural and anthropogenically modified systems. River flow regimes across lowland catchments in eastern England are examined using 47 variables, including those derived using the Indicators of Hydrologic Alteration (IHA) software. A principal component analysis method was used to identify redundant hydrological variables and those that best characterized the hydrological series (1986–2005). A small number of variables (<6) characterized up to 95% of the statistical variability in the flow series. The hydrological processes and conditions that the variables represent were found to be significant in structuring the in-stream macroinvertebrate community Lotic-invertebrate Index for Flow Evaluation (LIFE) scores at both the family and species levels. However, hydrological variables only account for a relatively small proportion of the total ecological variability (typically <10%). The research indicates that a range of other factors, including channel morphology and anthropogenic modification of in-stream habitats, structure riverine macroinvertebrate communities in addition to hydrology. These factors need to be considered in future environmental flow studies to enable the characterization of baseline/reference conditions for management and restoration purposes. Editor Z.W. Kundzewicz; Guest editor M. Acreman Citation Worrall, T.P., Dunbar, M.J., Extence, C.A., Laizé, C.L.R., Monk, W.A., and Wood, P.J., 2014. The identification of hydrological indices for the characterization of macroinvertebrate community response to flow regime variability. Hydrological Sciences Journal, 59 (3–4), 645–658.
Insect Conservation and Diversity | 2017
Adam J. Vanbergen; Ben A. Woodcock; Alan Gray; Christopher Andrews; Stephen C. Ives; Thomas R. Kjeldsen; Cedric Laize; Daniel S. Chapman; Adam Butler; Matthew T. O'Hare
Riparian invertebrate communities occupy a dynamic ecotone where hydrogeomorphological (e.g. river flows) and ecological (e.g. succession) processes may govern assemblage structure by filtering species according to their traits (e.g. dispersal capacity, niche). We surveyed terrestrial invertebrate assemblages (millipedes, carabid beetles, spiders) in 28 river islands across four river catchments over 2 years. We predicted that distinct ecological niches would produce taxon‐specific responses of abundance and species richness to: (i) disturbance from episodic floods, (ii) island area, (iii) island vegetation structure, and (iv) landscape structure. We also predicted that responses would differ according to species’ dispersal ability (aerial vs. terrestrial only), indicating migration was sustaining community structure. Invertebrate abundance and richness was affected by different combinations of vegetation structure, island area, and flood disturbance according to species’ dispersal capacity. Carabid abundance related negatively to episodic floods, particularly for flightless species, but the other taxa were insensitive to this disturbance. Larger islands supported greater abundance of carabids and all invertebrates able to disperse aerially. Vegetation structure, particularly tree canopy density and plant richness, related positively to invertebrate abundance across all taxa and aerial dispersers, whereas terrestrial disperser richness related positively to tree cover. Landscape structure did not influence richness or abundance. Multiple ecological processes govern riparian invertebrate assemblages. Overall insensitivity to flood disturbance and responses contingent on dispersal mode imply that spatial dynamics subsidise the communities through immigration. Particular habitat features (e.g. trees, speciose vegetation) may provide refuges from disturbance and concentration of niches and food resources.
Science of The Total Environment | 2019
Hendrik J. Krajenbrink; Mike Acreman; Michael J. Dunbar; David M. Hannah; Cedric Laize; Paul J. Wood
River impoundment by the construction of dams potentially modifies a wide range of abiotic and biotic factors in lotic ecosystems and is considered one of the most significant anthropogenic impacts on rivers globally. The past two decades have witnessed a growing body of research centred on quantifying the effects of river impoundment, with a focus on mitigating and managing the effects of individual large dams. This study presents a novel multi-scale comparison of paired downstream and control sites associated with multiple water supply reservoirs (n = 80) using a spatially extensive multi-year dataset. Macroinvertebrate community structure and indices were analysed in direct association with spatial (e.g. region) and temporal variables (e.g. season) to identify consistent patterns in ecological responses to impoundment. Macroinvertebrate communities at monitoring sites downstream of water supply reservoirs differed significantly from those at control sites at larger spatial scales, both in terms of community structure and taxa richness. The effect was most significant at the regional scale, while biogeographical factors appeared to be important drivers of community differences at the national scale. Water supply reservoirs dampened natural seasonal patterns in community structure at sites downstream of impoundments. Generally, taxonomic richness was higher and %EPT richness lower at downstream sites. Biomonitoring indices used for river management purposes were able to detect community differences, demonstrating their sensitivity to river regulation activities. The results presented improve our understanding of the spatially extensive and long-term effects of water supply reservoirs on instream communities and provide a basis for the future implementation of mitigation measures on impounded rivers and heavily modified waterbodies.
Hydrology and Earth System Sciences | 2012
Christof Schneider; Cedric Laize; Mike Acreman; Martina Flörke
River Research and Applications | 2014
Cedric Laize; Mike Acreman; Christof Schneider; Michael J. Dunbar; Helen Houghton-Carr; Martina Flörke; David M. Hannah
Hydrological Processes | 2015
Harriet G. Orr; Gavin Simpson; Sophie des Clers; Glen Watts; M. Hughes; Jamie Hannaford; Michael J. Dunbar; Cedric Laize; Robert L. Wilby; Richard W. Battarbee; Rob Evans
Journal of Hydrology | 2010
Cedric Laize; David M. Hannah
River Research and Applications | 2011
Judith O'Hare; Matthew T. O'Hare; Angela M. Gurnell; Michael J. Dunbar; Peter Scarlett; Cedric Laize