Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cedric Notredame is active.

Publication


Featured researches published by Cedric Notredame.


Genome Research | 2012

The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression

Thomas Derrien; Rory Johnson; Giovanni Bussotti; Andrea Tanzer; Sarah Djebali; Hagen Tilgner; Gregory Guernec; David Martin; Angelika Merkel; David G. Knowles; Julien Lagarde; Lavanya Veeravalli; Xiaoan Ruan; Yijun Ruan; Timo Lassmann; Piero Carninci; James B. Brown; Leonard Lipovich; José Manuel Rodríguez González; Mark G. Thomas; Carrie A. Davis; Ramin Shiekhattar; Thomas R. Gingeras; Tim Hubbard; Cedric Notredame; Jennifer Harrow; Roderic Guigó

The human genome contains many thousands of long noncoding RNAs (lncRNAs). While several studies have demonstrated compelling biological and disease roles for individual examples, analytical and experimental approaches to investigate these genes have been hampered by the lack of comprehensive lncRNA annotation. Here, we present and analyze the most complete human lncRNA annotation to date, produced by the GENCODE consortium within the framework of the ENCODE project and comprising 9277 manually annotated genes producing 14,880 transcripts. Our analyses indicate that lncRNAs are generated through pathways similar to that of protein-coding genes, with similar histone-modification profiles, splicing signals, and exon/intron lengths. In contrast to protein-coding genes, however, lncRNAs display a striking bias toward two-exon transcripts, they are predominantly localized in the chromatin and nucleus, and a fraction appear to be preferentially processed into small RNAs. They are under stronger selective pressure than neutrally evolving sequences-particularly in their promoter regions, which display levels of selection comparable to protein-coding genes. Importantly, about one-third seem to have arisen within the primate lineage. Comprehensive analysis of their expression in multiple human organs and brain regions shows that lncRNAs are generally lower expressed than protein-coding genes, and display more tissue-specific expression patterns, with a large fraction of tissue-specific lncRNAs expressed in the brain. Expression correlation analysis indicates that lncRNAs show particularly striking positive correlation with the expression of antisense coding genes. This GENCODE annotation represents a valuable resource for future studies of lncRNAs.


Cell | 2010

Long noncoding RNAs with enhancer-like function in human cells

Ulf Andersson Ørom; Thomas Derrien; Malte Beringer; Kiranmai Gumireddy; Alessandro Gardini; Giovanni Bussotti; Fan Lai; Matthias Zytnicki; Cedric Notredame; Qihong Huang; Roderic Guigó; Ramin Shiekhattar

While the long noncoding RNAs (ncRNAs) constitute a large portion of the mammalian transcriptome, their biological functions has remained elusive. A few long ncRNAs that have been studied in any detail silence gene expression in processes such as X-inactivation and imprinting. We used a GENCODE annotation of the human genome to characterize over a thousand long ncRNAs that are expressed in multiple cell lines. Unexpectedly, we found an enhancer-like function for a set of these long ncRNAs in human cell lines. Depletion of a number of ncRNAs led to decreased expression of their neighboring protein-coding genes, including the master regulator of hematopoiesis, SCL (also called TAL1), Snai1 and Snai2. Using heterologous transcription assays we demonstrated a requirement for the ncRNAs in activation of gene expression. These results reveal an unanticipated role for a class of long ncRNAs in activation of critical regulators of development and differentiation.


Nucleic Acids Research | 2011

T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension

Paolo Di Tommaso; Sébastien Moretti; Ioannis Xenarios; Miquel Orobitg; Alberto Montanyola; Jia-Ming Chang; Jean-François Taly; Cedric Notredame

This article introduces a new interface for T-Coffee, a consistency-based multiple sequence alignment program. This interface provides an easy and intuitive access to the most popular functionality of the package. These include the default T-Coffee mode for protein and nucleic acid sequences, the M-Coffee mode that allows combining the output of any other aligners, and template-based modes of T-Coffee that deliver high accuracy alignments while using structural or homology derived templates. These three available template modes are Expresso for the alignment of protein with a known 3D-Structure, R-Coffee to align RNA sequences with conserved secondary structures and PSI-Coffee to accurately align distantly related sequences using homology extension. The new server benefits from recent improvements of the T-Coffee algorithm and can align up to 150 sequences as long as 10 000 residues and is available from both http://www.tcoffee.org and its main mirror http://tcoffee.crg.cat.


Nucleic Acids Research | 2006

M-Coffee: combining multiple sequence alignment methods with T-Coffee

Iain M. Wallace; Orla O'Sullivan; Cedric Notredame

We introduce M-Coffee, a meta-method for assembling multiple sequence alignments (MSA) by combining the output of several individual methods into one single MSA. M-Coffee is an extension of T-Coffee and uses consistency to estimate a consensus alignment. We show that the procedure is robust to variations in the choice of constituent methods and reasonably tolerant to duplicate MSAs. We also show that performances can be improved by carefully selecting the constituent methods. M-Coffee outperforms all the individual methods on three major reference datasets: HOMSTRAD, Prefab and Balibase. We also show that on a case-by-case basis, M-Coffee is twice as likely to deliver the best alignment than any individual method. Given a collection of pre-computed MSAs, M-Coffee has similar CPU requirements to the original T-Coffee. M-Coffee is a freeware open-source package available from .


PLOS Biology | 2010

Multi-platform next-generation sequencing of the domestic Turkey (Meleagris gallopavo): Genome assembly and analysis

Rami A. Dalloul; Julie A Long; Aleksey V. Zimin; Luqman Aslam; Kathryn Beal; Le Ann Blomberg; Pascal Bouffard; David W. Burt; Oswald Crasta; R.P.M.A. Crooijmans; Kristal L. Cooper; Roger A. Coulombe; Supriyo De; Mary E. Delany; Jerry B. Dodgson; Jennifer J Dong; Clive Evans; Karin M. Frederickson; Paul Flicek; Liliana Florea; Otto Folkerts; M.A.M. Groenen; Tim Harkins; Javier Herrero; Steve Hoffmann; Hendrik-Jan Megens; Andrew Jiang; Pieter J. de Jong; Peter K. Kaiser; Heebal Kim

The combined application of next-generation sequencing platforms has provided an economical approach to unlocking the potential of the turkey genome.


Pharmacogenomics | 2002

Recent progress in multiple sequence alignment: a survey

Cedric Notredame

The assembly of a multiple sequence alignment (MSA) has become one of the most common tasks when dealing with sequence analysis. Unfortunately, the wide range of available methods and the differences in the results given by these methods makes it hard for a non-specialist to decide which program is best suited for a given purpose. In this review we briefly describe existing techniques and expose the potential strengths and weaknesses of the most widely used multiple alignment packages.


Nucleic Acids Research | 2006

Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee

Fabrice Armougom; Sébastien Moretti; Olivier Poirot; Stéphane Audic; Pierre Dumas; Basile Schaeli; Vladimir Keduas; Cedric Notredame

Expresso is a multiple sequence alignment server that aligns sequences using structural information. The user only needs to provide sequences. The server runs BLAST to identify close homologues of the sequences within the PDB database. These PDB structures are used as templates to guide the alignment of the original sequences using structure-based sequence alignment methods like SAP or Fugue. The final result is a multiple sequence alignment of the original sequences based on the structural information of the templates. An advanced mode makes it possible to either upload private structures or specify which PDB templates should be used to model each sequence. Providing the suitable structural information is available, Expresso delivers sequence alignments with accuracy comparable with structure-based alignments. The server is available on .


Nucleic Acids Research | 2003

Tcoffee@igs: a web server for computing, evaluating and combining multiple sequence alignments

Olivier Poirot; Eamonn O'Toole; Cedric Notredame

This paper presents Tcoffee@igs, a new server provided to the community by Hewlet Packard computers and the Centre National de la Recherche Scientifique. This server is a web-based tool dedicated to the computation, the evaluation and the combination of multiple sequence alignments. It uses the latest version of the T-Coffee package. Given a set of unaligned sequences, the server returns an evaluated multiple sequence alignment and the associated phylogenetic tree. This server also makes it possible to evaluate the local reliability of an existing alignment and to combine several alternative multiple alignments into a single new one. Tcoffee@igs can be used for aligning protein, RNA or DNA sequences. Datasets of up to 100 sequences (2000 residues long) can be processed. The server and its documentation are available from: http://igs-server.cnrs-mrs.fr/Tcoffee/.


Bioinformatics | 1998

COFFEE: an objective function for multiple sequence alignments.

Cedric Notredame; Liisa Holm

MOTIVATION In order to increase the accuracy of multiple sequence alignments, we designed a new strategy for optimizing multiple sequence alignments by genetic algorithm. We named it COFFEE (Consistency based Objective Function For alignmEnt Evaluation). The COFFEE score reflects the level of consistency between a multiple sequence alignment and a library containing pairwise alignments of the same sequences. RESULTS We show that multiple sequence alignments can be optimized for their COFFEE score with the genetic algorithm package SAGA. The COFFEE function is tested on 11 test cases made of structural alignments extracted from 3D_ali. These alignments are compared to those produced using five alternative methods. Results indicate that COFFEE outperforms the other methods when the level of identity between the sequences is low. Accuracy is evaluated by comparison with the structural alignments used as references. We also show that the COFFEE score can be used as a reliability index on multiple sequence alignments. Finally, we show that given a library of structure-based pairwise sequence alignments extracted from FSSP, SAGA can produce high-quality multiple sequence alignments. The main advantage of COFFEE is its flexibility. With COFFEE, any method suitable for making pairwise alignments can be extended to making multiple alignments. AVAILABILITY The package is available along with the test cases through the WWW: http://www. ebi.ac.uk/cedric CONTACT [email protected]


Nature | 2012

Epistasis as the primary factor in molecular evolution.

Michael S. Breen; Carsten Kemena; Peter K. Vlasov; Cedric Notredame; Fyodor A. Kondrashov

The main forces directing long-term molecular evolution remain obscure. A sizable fraction of amino-acid substitutions seem to be fixed by positive selection, but it is unclear to what degree long-term protein evolution is constrained by epistasis, that is, instances when substitutions that are accepted in one genotype are deleterious in another. Here we obtain a quantitative estimate of the prevalence of epistasis in long-term protein evolution by relating data on amino-acid usage in 14 organelle proteins and 2 nuclear-encoded proteins to their rates of short-term evolution. We studied multiple alignments of at least 1,000 orthologues for each of these 16 proteins from species from a diverse phylogenetic background and found that an average site contained approximately eight different amino acids. Thus, without epistasis an average site should accept two-fifths of all possible amino acids, and the average rate of amino-acid substitutions should therefore be about three-fifths lower than the rate of neutral evolution. However, we found that the measured rate of amino-acid substitution in recent evolution is 20 times lower than the rate of neutral evolution and an order of magnitude lower than that expected in the absence of epistasis. These data indicate that epistasis is pervasive throughout protein evolution: about 90 per cent of all amino-acid substitutions have a neutral or beneficial impact only in the genetic backgrounds in which they occur, and must therefore be deleterious in a different background of other species. Our findings show that most amino-acid substitutions have different fitness effects in different species and that epistasis provides the primary conceptual framework to describe the tempo and mode of long-term protein evolution.

Collaboration


Dive into the Cedric Notredame's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giovanni Bussotti

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Ionas Erb

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cedrik Magis

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge